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Previously
• Propositional logic

– Simplest language
– Its world only consists of facts (and “explicit rules”)

• Too puny a language to represent knowledge of 
complex environments with many objects in a 
concise way
– Difficult to represent even the Wumpus world

B1,1  Þ P1,2  Ú P2,1

Would like to say, “squares adjacent to pits are 
breezy” (not enumerate for all possible 
squares)



3

First-Order Logic
• Also called first-order predicate calculus

– FOL, FOPC
• Makes stronger commitments

– World consists of objects
• Things with identities
• e.g., people, houses, colors, …

– Objects have properties/relations that distinguish them 
from other objects

• e.g., Properties:  red, round, square, …
• e.g., Relations:  brother of, bigger than, inside, …

– Have functional relations 
• Return the object with a certain relation to given “input” object
• The “inverse” of a (binary) relation
• e.g., father of, best friend
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Examples of Facts as Objects and 
Properties or Relations

• “Squares neighboring the Wumpus are 
smelly”
– Objects

• Wumpus, squares
– Property

• Smelly
– Relation

• Neighboring
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Syntax of FOL: Basic Elements
• Constant symbols for specific objects

KingJohn, 2, OSU, …
• Predicate (boolean) properties (unary) / relations (binary+)

Brother(), Married(), >, …
• Functions (return objects)

Sqrt() , LeftLegOf(), FatherOf(), …
• Variables

x, y, a, b, …

• Connectives
Ù Ú ¬ Þ Û

• Equality
=

• Quantifiers
" $
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Atomic Sentences

• Collection of terms and relation(s) together 
to state facts

• Atomic sentence
– predicate(term1, …, termn)
– Or term1 = termn

• Examples
Brother(Richard, John)
Married(FatherOf(Richard), MotherOf(John))
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Complex Sentences

• Made from atomic sentences using logical 
connectives
¬S,    S1 Ù S2,    S1 Ú S2,    S1 Þ S2,    S1 Û S2

Examples:
Older(John, 30) Þ ¬Younger(John, 30)
>(1,2)  Ú £(1,2)
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Quantifiers

• Currently have logic that allows objects
• Now want to express properties of entire 

collections of objects
– Rather than enumerate the objects by name

• Two standard quantifiers
– Universal "
– Existential $
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Universal Qualification
• “For all …” (typically use implication Þ)

– Allows for “rules” to be constructed
• " <variables> <sentence>

– Everyone at OSU is smart
"x At(x, OSU) Þ Smart(x)

• "x P is equivalent to conjunction of all 
instantiations of P

(At(John, OSU) Þ Smart(John))
Ù (At(Bob, OSU) Þ Smart(Bob))
Ù (At(Mary, OSU) Þ Smart(Mary)) Ù …
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Existential Quantification
• “There exists …” (typically use conjunction Ù)

– Makes a statement about some object (not all)
• $ <variables> <sentences>

– Someone at OSU is smart
$x  At(x, OSU) Ù Smart(x)

• $ x P is equivalent to disjunction of all 
instantiations of P

(At(John, OSU) Ù Smart(John))
Ú (At(Bob, OSU) Ù Smart(Bob))
Ú (At(Mary, OSU) Ù Smart(Mary))  Ú …

• Uniqueness quantifier
$! x  says a unique object exists (i.e. there is exactly one)
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Properties of Quantifiers

• Quantifier duality:  Each can be expressed 
using the other

"x  Person(x) Þ Likes(x, IceCream) “Everybody likes ice 
cream”

¬$x  Person(x) Ù ¬Likes(x, IceCream) “Not exist anyone who does 
not like ice cream”

$x Person(x) Ù Likes(x, Broccoli) “Someone likes broccoli”
¬"x Person(x) Þ ¬Likes(x, Broccoli) “Not the case that everyone 

does not like broccoli
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Properties of Quantifiers

• Important relations

$x  P(x)  =  ¬"x  ¬P(x)
"x  P(x)  =  ¬$x ¬P(x)

P(x) Þ Q(x)    is same as ¬P(x) Ú Q(x)

¬ (P(x) Ù Q(x))   is same as ¬P(x) Ú ¬Q(x) 



Proof
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P Q P Þ Q

False False TRUE
False True TRUE
True False FALSE
True True TRUE

P Q ¬P ¬P Ú Q

False False True TRUE
False True True TRUE
True False False FALSE
True True False TRUE

P(x) Þ Q(x)    

is same as

¬P(x) Ú Q(x)



Proof
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P Q P Ù Q ¬(P Ù Q)

False False False TRUE
False True False TRUE
True False False TRUE
True True True FALSE

P Q ¬P ¬Q ¬P Ú ¬Q

False False True True TRUE
False True True False TRUE
True False False True TRUE
True True False False FALSE

¬(P(x) Ù Q(x)) 

is same as

¬P(x) Ú ¬Q(x) 



Proof
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P Q P Ú Q ¬(P Ú Q)

False False False TRUE
False True True FALSE
True False True FALSE
True True True FALSE

P Q ¬P ¬Q ¬P Ù ¬Q

False False True True TRUE
False True True False FALSE
True False False True FALSE
True True False False FALSE

¬(P(x) Ú Q(x)) 

is same as

¬P(x) Ù ¬Q(x) 
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Conversion Example

1.  "x  Person(x) Þ Likes(x, IceCream)

[use: "x P(x) = ¬$x ¬P(x)]

2. ¬$x ¬(Person(x) Þ Likes(x, IceCream))

[use: P(x) Þ Q(x) is same as ¬P(x) Ú Q(x)]

3. ¬$x ¬(¬Person(x) Ú Likes(x, IceCream))

[distribute negatives]

4. ¬$x Person(x) Ù ¬Likes(x, IceCream)



17

Nested Quantifiers

• "x "y   is same as "y "x ( "x,y )

• $ x $ y   is same as $ y $ x ( $ x,y )

• $ x "y   is not same as "y $ x 
$ y Person(y) Ù ("x Person(x) Þ Loves(x,y))

“There is someone who is loved by everyone”

"x Person(x) Þ $y Person(y) Ù Loves(x,y)
“Everybody loves somebody”
(not guaranteed to be the same person)
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Equality

• Equality symbol (=)
– Make statements to the effect that two terms 

refer to the same object

“Henry is the Father of John”
Father(John) = Henry

“Spot has at least two sisters”
$ x,y Sister(x, Spot) Ù Sister(y, Spot) Ù ¬(x=y) 
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More Sentences

• “Brothers are siblings”
"x,y  Brother(x,y) Þ Sibling(x,y)

• “One’s mother is one’s female parent”
"x,y  Mother(x,y) Þ Female(x) Ù Parent(x,y)
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Kinds of Rules
• For “Squares are breezy near a pit”

– Diagnostic rule
• Lead from observed effects to hidden causes

– “Infer cause from effect”

"y  Breezy(y) Þ $x  Pit(x) Ù Adjacent(x,y)

– Causal “model-based” rule
• Hidden world properties causes certain percepts

– “Infer effect from cause”

"x,y  Pit(x) Ù Adjacent(x,y) Þ Breezy(y)
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General Knowledge and 
Dealing with Categories

• Can we get further using less knowledge or 
more general knowledge?

• Classic example in AI is about knowledge 
and generality in sentences about birds and 
flight
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Birds and Flight

• Organize facts about birds as listing of facts
(robins fly) (gannets fly) (western grebes fly)
(crows fly) (penguins don’t fly) (ostriches don’t fly)
(common loons fly) (fulmars fly) (arctic loons fly)

• Approximately 8,600 species of birds in 
world
– Big list
– Small in comparison to world population of  

~100 billion birds!
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Birds and Flight

• Rather than extending table, simpler to 
represent most facts with single symbol 
structure representing that birds of all
species fly

• Reasoning about classes

, ( , ) ( , ) ( )x s species s bird inst x s flys x" Ù Þ
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Categorization

• Categorization is very basic cognitive mechanism
– Treat different things as equivalent
– Respond in terms of class membership rather than 

individuality
– Fundamental to cognition and knowledge engineering
– Reasoning by classes reduces complexity

• Overgeneralization
– Treating all birds as equivalent about questions of 

flying
– Need to handle exceptions

• e.g., penguins (and ostriches) do not fly!
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Category Exceptions
• How many circumstances determine whether 

individual birds can fly?
• Minsky, AAAI-85

– “Cooked birds can’t fly”
• How about a cooked bird served in airline meal?

– “Stuffed birds, frozen birds, and drowned birds cannot 
fly”

– “Birds wearing concrete overcoats, and wooden bird 
decoys do not fly”

• Amount of special case knowledge increases
• Whether a particular bird can fly is determined by:

– Its identity, condition, situation
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Qualification Problem

• Want to separate typical statements from 
exceptions

• Qualification problem (McCarthy)
– Proliferation of number of rules 
– Want to organize knowledge in general 

statements about usual cases
• Categories are used to exploit regularities of the 

world
– Then qualify statements describing their 

exceptions
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Qualification Problem
• Abnormalcy predicates

– Lay out qualifications for abnormal conditions
– Example: “birds fly unless something abnormal about 

them”
(bird x) and (not (ab1 x)) ® (flies x)

– Classes of birds that are abnormal and conditions
(disabled-bird x) ® (ab1 x)
(fake-bird x) ® (ab1 x)

(wears x concrete-overshoes) ® (disabled-bird x)
(dead x) ® (disabled-bird x)

(drowned x) ® (dead x)
(stuffed x) ® (dead x)
(cooked x) ® (dead x)

(wooden-image x) and (bird x) ® (fake-bird x)
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Categories and Exceptions
• Benefits of separating knowledge of typical from 

exceptions
– Reduces number of sentences
– Focus on categories of information

• Guides introduction of new kinds of knowledge into categories 
to answer questions

• Basic goal to provide framework for assumptions
– Default statements believed in absence of contradictory 

information
– “Unless you know otherwise for a particular bird, 

assume the bird can fly”
• However, people have much richer model of 

what’s going on for flying
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Summary

• First-order logic
– Increased expressive power over Propositional Logic
– Objects and relations are semantic primitives
– Syntax: constants, functions, predicates, equality, 

quantifiers
• Two standard quantifiers

– Universal "
– Existential $

• Dealing with categories and exceptions
– Qualification problem
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Topics

• Reduction of first-order inference to propositional 
inference

• First-order inference algorithms
– Generalized Modus Ponens
– Forward chaining ***
– Backward chaining ***
– Resolution-based theorem proving ***



Reduction to Propositional 
Inference
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Propositional vs. FOL Inference

• First-order inference can be done by 
converting KB to propositional logic and 
using propositional inference
– Using modus ponens, etc.

• Specifically, what to do with quantifiers?
• Substitution: {variable/Object}

– Remove quantifier by substituting variable with 
specific object
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Reduction to Propositional 
Inference

• Universal Quantifiers (")
– Recall: Sentence must be true for all objects in the world 

(all values of variable)
– So substituting any object must be valid (Universal 

Instantiation, UI)

• Example
– 1) "x Person(x) ® Likes(x,IceCream)
– Substituting: (1), {x/Jack}
– 2) Person(Jack) ® Likes(Jack,IceCream)



34

Reduction to Propositional 
Inference (con’t)

• Existential Quantifiers ($)
– Recall: Sentence must be true for some object in the world (or objects)
– Assume we know this object and give it an arbitrary (unique!) name 

(Existential Instantiation, EI)
– Known as Skolem constant (SK1, SK2, …)

• Example
– 1) $x Person(x) Ù Likes(x,IceCream)
– Substituting: (1), {x/SK1}
– 2) Person(SK1) Ù Likes(SK1,IceCream)

• We don’t know who “SK1” is (and usually can’t), but 
we know they must exist
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Reduction to Propositional 
Inference (con’t)

• Multiple Quantifiers
– No problem if same type ("x,y or $x,y)
– Also no problem if: $x "y

• There must be some x for which the sentence is true with every possible y
• Skolem constant still works (for x)

• Problem with "x $y
– For every possible x, there must be some y that satisfies the sentence
– Could be different y value to satisfy for each x!



36

Reduction to Propositional 
Inference (con’t)

• Problem with "x $y (con’t)
– The value we substitute for y must depend on x
– Use a Skolem function instead

• Example
– 1) "x $y Person(x) ® Loves(x,y)
– Substitute: (1), {y/SK1(x)}
– 2) "x Person(x) ® Loves(x,SK1(x))
– Then: (2), {x/Jack}
– 3) Person(Jack) ® Loves(Jack,SK1(Jack))

• SK1(x) is effectively a function which returns a person that x
loves. But, again, we can’t generally know the specific value it 
returns.



37

Reduction to Propositional 
Inference (con’t)

• Internal Quantifiers
– Previous rules only work if quantifiers are external (left-most)
– Consider: "x ($y Loves(x,y)) ® Person(x)
– “For all x, if there is some y that x loves, then x must be a person”
– A Skolem function limits the values y could take (to one) and we can’t 

know what it is.
• Need to move the quantifier outward

– "x ($y Loves(x,y)) ® Person(x)
– "x ¬($y Loves(x,y)) Ú Person(x) (convert to ¬,Ú,Ù)
– "x "y ¬Loves(x,y) Ú Person(x) (move ¬ inward)
– "x "y Loves(x,y) ® Person(x)

• Now we can see that we can actually substitute anything for y
• May need to rename variables before moving quantifier left
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Reduction to Propositional 
Inference (con’t)

• Once have non-quantified sentences (from quantified 
sentences using UI, EI), possible to reduce first-order 
inference to propositional inference

• Suppose KB contains:
"x King(x) Ù Greedy(x) ® Evil(x)
King(John)
Greedy(John)
Brother(Richard, John)

• Using UI with {x/John} and {x/Richard}, we get
King(John) Ù Greedy(John) ® Evil(John)
King(Richard) Ù Greedy(Richard) ® Evil(Richard)
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Reduction to Propositional 
Inference (con’t)

• Now the KB is essentially propositional:
King(John) Ù Greedy(John) ® Evil(John)
King(Richard) Ù Greedy(Richard) ® Evil(Richard)
King(John)
Greedy(John)
Brother(Richard, John)

• Then can use propositional inference algorithms to 
obtain conclusions
– Modus Ponens yields Evil(John)

,a a b
b
®

( ) ( ), ( ) ( ) ( )
( )

King John Greedy John King John Greedy John Evil John
Evil John

Ù Ù ®



Forward and Backward Chaining
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Forward and Backward Chaining
• Have language representing knowledge (FOL) and 

inference rules (Generalized Modus Ponens)
– Now study how a reasoning program is constructed

• Generalized Modus Ponens can be used in two ways:
#1) Start with sentences in KB and generate new conclusions 

(forward chaining)
• “Used when a new fact is added to database and want to 

generate its consequences”

or
#2) Start with something want to prove, find implication 

sentences that allow to conclude it, then attempt to 
establish their premises in turn (backward chaining)

• “Used when there is a goal to be proved”
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Forward Chaining
• Forward chaining normally triggered by addition of new

fact to KB (using TELL)
• When new fact p added to KB:

– For each rule such that p unifies with a premise
• If the other premises are known, then add the conclusion to the KB 

and continue chaining

– Premise: Left-hand side of implication
• Or, each term of conjunction on left hand side

– Conclusion: Right-hand side of implication
• Forward chaining uses unification

– Make two sentences (fact + premise) match by substituting 
variables (if possible)

• Forward chaining is data-driven
– Inferring properties and categories from percepts
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Forward Chaining Example
• Add facts 1, 2, 3, 4, 5, 7 in turn

– Number in [] is unification literal; Ö rule firing
1. Buffalo(x) Ù Pig(y) ® Faster(x, y)
2. Pig(y) Ù Slug(z) ® Faster(y, z)
3. Faster(x, y) Ù Faster(y, z) ® Faster(x, z)
4. Buffalo(Bob)  [1a, ´]
5. Pig(Pat)  [1b, Ö]  

6.   Faster(Bob, Pat) [3a, ´], [3b, ´]
[2a, ´]

7. Slug(Steve)  [2b, Ö] 
8.   Faster(Pat, Steve) [3a, ´], [3b, Ö]

9.   Faster(Bob, Steve) [3a, ´], [3b, ´]

Note: "x,y,z
dropped

Can’t satisfy (1b), 
failed to fire rule 

Also can satisfy 
(1a), can fire rule! 



Another Example
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Knowledge Base
A ® B
A ® D
D ® C
A ® E
D ® F
E ® G 

Add A:

A,  A ® B gives B [done]  
A,  A ® D gives D

D,  D ® C gives C [done]
D,  D ® F gives F [done]

A,  A ® E gives E
E,  E ® G gives G [done]

[done]

Order of generation B, D, C, F, E, G  
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Backward Chaining
• Backward chaining designed to find all answers to 

a question posed to KB (using ASK)
• When a query q is asked:

– If a matching fact q’ is known, return the unifier
– For each rule whose consequent q’ matches q

• Attempt to prove each premise of the rule by backward chaining

• Added complications
– Keeping track of unifiers, avoiding infinite loops

• Two versions
– Find any solution
– Find all solutions

• Backward chaining is basis of logic programming
– Prolog
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Backward Chaining Example

1. Pig(y) Ù Slug(z) ® Faster(y, z)

2. Slimy(z) Ù Creeps(z) ® Slug(z)
3. Pig(Pat)
4. Slimy(Steve)
5. Creeps(Steve)
Prove: Faster(Pat, Steve)

4 5{} {}

Creeps(Steve)Slimy(Steve)

2 {z/Steve}3 {}

Given facts/rules 1-5 in KB:

Pig(Pat)

1 {y/Pat, z/Steve}

Slug(Steve)

Faster(Pat, Steve)



Resolution
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Resolution
• Uses proof by contradiction

– Referred to by other names
• Refutation
• Reductio ad absurdum

• Inference procedure using resolution
– To prove P:

• Assume P is FALSE
• Add ¬P to KB
• Prove a contradiction

– Given that the KB is known to be True, we can believe 
that the negated goal is in fact False, meaning that the 
original goal must be True
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Simple Example

• Given:  “All birds fly”, “Peter is a bird”
• Prove:  “Peter flies”
• Step #1:  have in FOL

• Step #2:  put in normal form

( ) ( )
( )

x Bird x Flies x
Bird Peter
" ®

( ) ( )
( )

Bird x Flies x
Bird Peter
¬ Ú



¬𝐹𝑙𝑖𝑒𝑠 𝑃𝑒𝑡𝑒𝑟
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Simple Example (con’t)
• Step #3:  Assume contradiction of goal

GOAL TO TEST:
• Step #4:  Unification {x/Peter}

• Step #5:  Resolution (unit)

• Step #6:  Contradiction
– The result of Step #5 says that “Peter is not a bird”, but 

this is in contrast to KB containing Bird(Peter)
– Therefore, we can conclude that “Peter does indeed 

fly”

( ) ( )
( )

Bird x Flies x
Bird Peter
¬ Ú
KB:

𝛼,¬𝛼 ∨ 𝛽
𝛽

¬𝐹𝑙𝑖𝑒𝑠 𝑃𝑒𝑡𝑒𝑟 , 𝐹𝑙𝑖𝑒𝑠 𝑃𝑒𝑡𝑒𝑟 ∨ ¬𝐵𝑖𝑟𝑑(𝑃𝑒𝑡𝑒𝑟)
¬𝐵𝑖𝑟𝑑(𝑃𝑒𝑡𝑒𝑟)

¬𝐵𝑖𝑟𝑑(𝑃𝑒𝑡𝑒𝑟) ∨ 𝐹𝑙𝑖𝑒𝑠 𝑃𝑒𝑡𝑒𝑟



Another Example

KB:
kb-1:  A(x,bar) Ú B(x) Ú C(x)
kb-2:  D(y,foo) Ú ¬B(y)
kb-3:  E(z) Ú ¬A(z,bar)
kb-4: ¬D(Minsky,foo)
kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)
51



Another Example

KB:
kb-1:  A(x,bar) Ú B(x) Ú C(x)
kb-2:  D(y,foo) Ú ¬B(y)
kb-3:  E(z) Ú ¬A(z,bar)
kb-4: ¬D(Minsky,foo)
kb-5: ¬A(Minsky,bar)

Goal: prove C(Minsky)
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0: ¬C(Minsky)  [add negated goal]

1:   A(Minsky,bar) Ú B(Minsky) Ú C(Minsky)  [kb-1] 
{x/Minsky}

2: ¬C(Minsky),  A(Minsky,bar) Ú B(Minsky) Ú C(Minsky)
2.a:  A(Minsky,bar) Ú B(Minsky) [resolution: 0,1]

3:   D(Minsky,foo) Ú ¬B(Minsky) [kb-2]
{y/Minsky}

4:   A(Minsky,bar) Ú B(Minsky),  D(Minsky,foo) Ú ¬B(Minsky)
4.a: A(Minsky,bar) Ú D(Minsky,foo)  [resol: 2a,3]

5:  ¬A(Minsky,bar),  A(Minsky,bar) Ú D(Minsky,foo) 
5.a: D(Minsky,foo) [resol: 4a,kb-5]

6:     D(Minsky,foo) Ù ¬D(Minsky,foo)
FALSE, CONTRADICTION!!!
must be C(Minsky)
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Summary
• Reduction of first-order inference to propositional 

inference
– Universal and Existential Instantiation 

• Forward chaining
– Infer properties in data-driven manner

• Backward chaining
– Proving query of a consequent by proving premises

• Resolution using proof by contradiction


