Python Programming

Talk is cheap. Show me the code.

— ZLinus Jorwalds —

Python Programming

father of python § Q

Q Al () Images [E News [] Videos < Shopping i More Settings Tools

About 76,800,000 results (0.82 seconds)

Python / Designed by

Guido van Rossum

UUX Project

Dropbox Hires Away Google's Guido Van Rossum, The Father Of Python. The original open source . = pZeuUUX.org g
software “Benevolent Dictator For Life” and author of Python, Guido van Rossum, is leaving \ & b s
Google to join Dropbox, the startup will announce later today. Dec 7, 2012

“Life is short (You need Python)” -- Bruce Eckel

Python Programming

>>> p = (4, 5)
>>> X, ¥y =P
>>> X

>>> y

>>>

>>> data = ['ACME', 50, 91.1, (2012, 12, 21)]
>>> name, shares, price, date = data
>>> Name

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

"ACME'
>>> date
(2012, 12, 21)

>>> name, shares, price, (year, mon, day) = data
>>> Nadme

"ACME’

>>> year

2012

>>> mon

12

>>> day

21

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

If there is a mismatch in the number of elements, you'll get an error. For example:

>>> p = (4, 5)
>>> X, YV, Z = P

File "<stdin>", line 1, in <module>

ValueError: need more than 2 values to unpack
>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> s = 'Hello'

>»>> a, b, ¢, d, e = s
>>> 3

n

>>> b

‘e
>>> e
'o
>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

def drop first last(grades):
first, *middle, last = grades
return avg(middle)

>>> record = ('Dave', 'dave@example.com', '773-555-1212', '847-555-1212")
>>> name, email, *phone_numbers = user_record

>>> name

'Dave’

>>> email

'dave@example.com'

>>> phone_numbers

['773-555-1212"', '847-555-1212"']

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

def do_foo(x, y):
print('foo', x, Vy)

records = [def do_bar(s):
('foo', 1, 2), print('bar', s)
('bar', 'hello'),
('foo', 3, 4), for tag, *args in records:
] if tag == 'foo':
do_foo(*args)
elif tag == 'bar':

do_bar(*args)

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> line = 'nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false’
>>> uname, *fields, homedir, sh = line.split(':")

>>> uname

'nobody’

>>> homedir

"[var /empty'

>>> sh

"/usr/bin/false’

>>2>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> items = [1, 10, 7, 4, 5, 9]
>>> head, *tail = items

>>> head

1

>>> tail
[106, 7, 4, 5, 9]

>>> def sum(items):
head, *taill = items
return head + sum(tail) if tail else head

>>> sum(items)

36

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

What is Al

The science of making machines that:

Think like people Think rationally

Act like people Act rationally

Fundamental question for this lecture
(and really this whole Al field!):

How do you turn a real-world
problem into an Al solution?

Al — Agents and Environments

Much (though not alll) of Al is concerned with agents operating in
environments.

Agent — an entity that perceives and acts

Environment — the problem setting

Fleshing it out

Performance — measuring desired
outcomes

Environment — what populates the task’s
world?

Actuators — what can the agent act with?

Sensors — how can the agent perceive the
world?

PEAS in a taxi

Automated taxi driver

Performance — Safe, fast, legal, comfortable trip, maximize profits
Environment — Roads, other traffic, pedestrians, customers
Actuators — Steering, accelerator, brake, signals, horn, display

Sensors - Cameras, sonar, speedometer, GPS, odometer,
accelerometer, engine sensors, microphone/keyboard

What makes an Agent?

Agent — an entity that perceives its environment through sensors, and
acts on it with actuators.

Percepts are constrained by
. Sensors _
Sensors + Environment Percepts

JU9WIUOIIAU]T

Actions are constrained by
Actuators + Environment

Actuators

/\ VY Actions g :

Agent Function — how does it
choose the action?

What makes one rational?

Actually pretty simple:

A rational agent always acts to
maximize its expected performance
measure, given current state/percept

Our sample agents

Pacman Spam detector
Percepts — squares around Pacman Percepts — sender, subject line, body
Actions — move U/D/L/R of current email

Actions — mark Spam/Not Spam

Environment — map with walls, dots,
and ghosts Environment — your email inbox

Reflex Agents

* Reflex agents:

* Choose action based on current percept (and
maybe memory)

* May have memory or a model of the world’s
current state

* Do not consider the future consequences of
their actions

e Consider how the world IS

Reflex Agents

* Reflex agents:

* Choose action based on current percept (and
maybe memory)

* May have memory or a model of the world’s
current state

* Do not consider the future consequences of
their actions

e Consider how the world IS

* Can a reflex agent be rational?

Planning Agents

* Planning agents:
e Ask “what if”

* Decisions based on (hypothesized) consequences
of actions

* Must have a model of how the world evolves in
response to actions

* Must formulate a goal (test)
* Consider how the world WOULD BE

Goal-based Agents

Chooses action (sequence) to get from current state to some goal

Pacman Spam detector
Percepts — squares around Pacman Percepts — sender, subject line, body of

Actions — move U/D/L/R current email

Environment — map with walls, dots, and
ghosts Environment — your email inbox

Goal: @U‘ Goal:

Actions — mark Spam/Not Spam

s

Utility-based Agents

Chooses action (sequence) to get from current state to some goal
with maximum utility along the way

Pacman Spam detector
Percepts — squares around Pacman Percepts — sender, subject line, body of

Actions — move U/D/L/R current email

Environment — map with walls, dots, and
ghosts Environment — your email inbox

Actions — mark Spam/Not Spam

Goal: Goal:

...in as short a path as possible!

summary

Reflex agents Goal-based agents

Act on current state (and maybe past) From current state to desired future

Simple — current p any action(s) to

Can also have a Learning Agent —
we’ll talk about these later in the
course!

Model — current p h the goal

of rest of t action(s) to

reaer—ne goal

Al — Agents and Environments

Environment — the problem setting

Kinds of task environments

6 common properties to distinguish tasks (not exhaustive)
* Fully observable vs Partially observable
* Single agent vs Multiagent
* Deterministic vs Stochastic
e Episodic vs Sequential
* Static vs Dynamic
* Discrete vs Continuous

Fully observable vs partially observable

ACROSS 45 fire under

1 See 24-Across (urged tz tal;e
tion): .

6 They radiate action): 2 wds

Fully observable — agent is able to sense everything in the environment

2 3 4 |5 6 (7 [8 [o |1
14 15
- 17 18
earthquake’s Robinson _
epicenter 49 Vibrations caused 20 21
11 The “F” of by earthquakes -
“T.G.I.F.!": Abbr. 52 Low in fat

Partially observable — noisy, inaccurate, or incomplete sensors

Single agent vs Multiagent

Single agent — self-explanatory

Multiagent — task involves more than one agent, each with its own
performance measure

May be competitive (measures are opposed)
or cooperative (measures align)

Deterministic vs Stochastic

Deterministic — next state of the world is fully determined by
current state + agent action

Stochastic — it’s not deterministic

Episodic vs Sequential

Episodic — Each step/decision is independent of the previous ones

Sequential — Each step/decision affects later ones

Static vs Dynamic

Static — world doesn’t change while agent is choosing an action

Dynamic — decision time matters!

Discrete vs Continuous

Discrete — possible states/actions are distinct; world changes discretely

.

Continuous — states/actions take on continuous values

These help determine how to approach problems

Static -> can focus on getting really high accuracy/utility

Dynamic -> trade some utility for higher efficiency (speed!)

Episodic -> reflex agent with a great model

Sequential -> need a goal-oriented agent

Stochastic -> need robustness to uncertainty/failure (robots!)

Deterministic -> can focus on efficiency and exactness (Internet crawler)

Next up

Defining search problems — how to choose the right action sequence?

Uninformed search approaches — simple reflex agents for searching

