Python Programming

from collections import OrderedDict

d = OrderedDict()
d['foo'] = 1
d['bar'] = 2
d['spam'] = 3
d['grok'] = 4

Outputs "foo 1", "bar 2", "spam 3", "grok 4"
for key in d:
print(key, d[key])

>>> import json
>>> json.dumps(d)
"{"foo": 1, "bar": 2, "spam": 3, "grok": 4}'

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

min_price = min(zip(prices.values(), prices.keys()))
min_price is (10.75, 'FB')

max_price = max(zip(prices.values(), prices.keys()))

prices = { # max_price is (612.78, 'AAPL')
'"ACME': 45.23,
"AAPL': 612.78, prices_sorted = sorted(zip(prices.values(), prices.keys()))
"IBM': 205.55, # prices_sorted is [(10.75, 'FB'), (37.2, 'HPQ'),
'HPQ': 37.20, # (45.23, 'ACME'), (205.55, 'IBM'),
'FB': 10.75 # (612.78, 'AAPL')]
}

prices_and_names = zip(prices.values(), prices.keys())
print(min(prices_and names)) # 0K
print(max(prices_and_names)) # ValueError: max() arg is an empty sequence

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

min(prices) # Returns 'AAPL'
max(prices) # Returns 'IBM'

min(prices.values()) # Returns 10.75
max(prices.values()) # Returns 612.78

prices = {
'"ACME': 45.23, min(prices, key=lambda k: prices[k]) # Returns 'FB'
"AAPL': 612.78, max(prices, key=lambda k: prices[k]) # Returns 'AAPL'
"IBM': 205.55,
'"HPQ': 37.20, min_value = prices[min(prices, key=lambda k: prices[k])]
'FB': 10.75 ,

} >>> prices = { 'AAA' : 45.23, '777': 45.23 }

>>> min(zip(prices.values(), prices.keys()))
(45.23, 'AAA')

>>> max(zip(prices.values(), prices.keys()))
(45.23, 'z77')

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

: 10,
. 11,

Python Programming

#
a

4
d

#

Find keys in common
.keys() & b.keys() # { 'x', 'y' }

Find keys in a that are not in b
.keys() - b.keys() #{ 'z' }

Find (key,value) pairs in common

.items() & b.items() # { ('v', 2) }

Make a new dictionary with certain keys removed
= {key:a[key] for key in a.keys() - {'z', 'w'}}
c is {'x': 1, 'y': 2}

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

def dedupe(items):
seen = set()
for item in items:
if item not in seen:
yield item
seen.add(item)

>>>a = [1, 5, 2, 1, 9, 1, 5, 10]
>>> list(dedupe(a))
[1: 5: 2, 9: 10]

>>>

Python Programming

def dedupe(items, key=None):
seen = set()
for item in itenms:
val = item if key is None else key(item)
if val not in seen:
yield item
seen.add(val)

>>> a = [{'x":1, 'y':2}, {'x':1, 'y':3}, {'x":1, "y':2}, {'x":2, 'y':4}]
>>> list(dedupe(a, key=lambda d: (d['x'],d['yv'])))

[{'x': 1, 'y': 2}, {'x': 1, 'y': 3}, {'x": 2, 'y': 4}]

>>> list(dedupe(a, key=lambda d: d['x']))

[{'x': 1, 'y': 2}, {'x': 2, 'y': 4}]

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

HHHHHH 0123456789012345678901234567890123456789012345678901234567890 '
record = ... i i 100 L...... 513.25 '
cost = int(record[20:32]) * float(record[40:48])

SHARES = slice(20,32)
PRICE slice(40,48)

cost = int(record[SHARES]) * float(record[PRICE])

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> a = slice(10, 50, 2)
>>> a.start

>>> {tems = [0, 1, 2, 3, 4, 5, 6] 10

>>> a = slice(2, 4) >>> a.stop

>>> items[2:4] 50

[2, 3] >>> a.step

>>> items[a] 2

[2, 3]

>>> items[a] = [10,11] >>> s = 'HelloWorld'
>>> 1tems >>> a.indices(len(s))
[0, 1, 10, 11, 4, 5, 6] (5, 10, 2)

>>> del items[a] >>> for 1 in range(*a.indices(len(s))):
»>>> Ltems cee print(s[i])

[0, 1’ 4, 5, 6]

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

words = [
'look', 'into', 'my', 'eyes', 'look', 'into', 'my', 'eyes',
'the', 'eyes', 'the', 'eyes', 'the', 'eyes', 'not', 'around', 'the',
'eyes', "don't", 'look', 'around', 'the', 'eyes', 'look', 'into',

my', 'eyes', "you're", 'under'
]
from collections import Counter >>> word_counts['not']
word_counts = Counter(words) 1
top_three = word_counts.most_common(3) >>> word_counts['eyes']
print(top_three) 8

Outputs [('eyes', 8), ('the', 5), ('look', 4)]

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> morewords = ['why','are','you', 'not', " 'looking','in', 'my', 'eyes']
>>> for word in morewords:
word_counts[word] += 1

>>> word_counts['eyes']
9

>>> word_counts.update(morewords)

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> a = Counter(words)
>>> b = Counter(morewords)
>>> da

Counter({'eyes': 8, 'the': 5, 'look': 4, 'into': 3, 'my': 3, 'around': 2,
"you're": 1, "don't": 1, 'under': 1, 'not': 1})

>»>> b

Counter({'eyes': 1, 'looking': 1,
'my': 1, 'why': 1})

are': 1, 'in': 1, 'not': 1, 'you': 1,

>>> # Combine counts

>>>c=a+b

>>> C

Counter({'eyes': 9, 'the': 5, 'look': 4, 'my': 4, '"into': 3, 'not': 2,
'around': 2, "you're": 1, "don't": 1, 'in': 1, 'why': 1,
'"looking': 1, 'are': 1, 'under': 1, 'you': 1})

>>> # Subtract counts

>>>d=a -b

>>> d

Counter({'eyes': 7, 'the': 5, 'look': 4, 'into': 3, 'my':
"you're": 1, "don't": 1, 'under': 1})

2, 'around': 2,

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

DES vs BFS

If you know a solution is not far from the root of the tree, a breadth first search (BFS) might be
better.

If the tree is very deep and solutions are rare, depth first search (DFS) might take an extremely
long time, but BFS could be faster.

If the tree is very wide, a BFS might need too much memory, so it might be completely
impractical.

If solutions are frequent but located deep in the tree, BFS could be impractical.

If the search tree is very deep you will need to restrict the search depth for depth first search
(DFS), anyway (for example with iterative deepening).

Iterative Deepening

* |[dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
* Run a DFS with depth limit 1. If no solution...
* Run a DFS with depth limit 2. If no solution...
* Run a DFS with depth limit 3.

* Isn’t that wastefully redundant?

* Generally most work happens in the lowest level
searched, so not so bad!

Python Code for Iterative Deepening

A function to perform a Depth-Limited search
from given source 'src'

def DLS(src,target,maxDepth):
if src == target : return True

If reached the maximum depth, stop recursing.
if maxDepth <= 0 : return False

Recur for all the vertices adjacent to this vertex
for i in graph[src]:
if(DLS(i,target,maxDepth-1)):
return True
return False

IDDFS to search if target is reachable from v.
It uses recursive DLS()
def IDDFS(src,target, maxDepth):

Repeatedly depth-limit search till the
maximum depth
for i in range(maxDepth):
if (DLS(src, target, i)):
return True
return False

Cost-Sensitive Search

3

2

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost <
contours

Uniform Cost Search (UCS) Properties

What nodes does UCS expand?

* Processes all nodes with cost less than cheapest solution! ~

* |f that solution costs C* and arcs cost at least £, then the
“effective depth” is roughly C*/¢

* Takes time O(b¢™%) (exponential in effective depth) C¥e “tiers” <

How much space does the fringe take?
* Has roughly the last tier, so O(bc™%)

Is it complete?

* Assuming best solution has a finite cost and minimum arc cost @
is positive, yes!

s it optimal?
* Yes! (skipping the proof for now)

Uniform Cost Issues

e Remember: UCS explores increasing cost
contours

* The good: UCS is complete and optimal!

* The bad:

* Explores options in every “direction”
* No information about goal location

e We'll fix that soon!

BFS/DFS/UCS

* Breadth-first search
* Good: optimal, works well when many options, but not many actions required
* Bad: assumes all actions have equal cost

* Depth-first search

* Good: memory-efficient, works well when few options, but lots of actions
required

* Bad: not optimal, can run infinitely, assumes all actions have equal cost

* Uniform-cost search
* Good: optimal, handles variable-cost actions

+ Bad: explores all options, no information about goal location | Basically Dijkstra's

Algorithm!

Dijkstra‘s algorithm (Uniform-cost search)

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost <
contours

Search example: Pancake Problem

Rule: a spatula can be inserted at any interval and flip all pancakes above it.
Cost: Number of pancakes flipped.

Pancake BFS

Draw it by yourself!

Pancake UCS

Draw it by yourself!

Pancake DFS

State space graph with costs as weights

Cost: 16
Steps: 6

Pancake Optimal

State space graph with costs as weights

Cost: 7
Steps: 2

Project 1: Search (due 09/13)

Question 1 (3 points): Finding a Fixed Food Dot using Depth First Search

In searchAgents.py , you'll find a fully implemented SearchAgent , which plans out a path through Pacman's world and then executes that path step-by-step. The search
algorithms for formulating a plan are not implemented -- that's your job.

First, test that the SearchAgent is working correctly by running:

python pacman.py -1 tinyMaze -p SearchAgent —-a fn=tinyMazeSearch

Question 2 (3 points): Breadth First Search

Implement the breadth-first search (BFS) algorithm in the breadthFirstSearch functionin uninformed_search.py . Again, write a graph search algorithm that avoids expanding
any already visited states. Test your code the same way you did for depth-first search.

python pacman.py -1 mediumMaze -p SearchAgent -a fn=bfs

Question 3 (4 points): Uniform Cost Search

While BFS will find a fewest-actions path to the goal, we might want to find paths that are "best" in other senses. Consider mediumDottedMaze , where food is concentrated in the
eastern half of the map, and mediumScaryMaze , where that side of the map is full of ghosts.

By changing the cost function, we can encourage Pacman to find different paths through the maze. For example, we can charge more for steps in the eastern half of the map when
it's full of dangerous ghosts, and less when it's full of tasty pellets, and a rational Pacman agent should adjust its behavior in response.

Implement the uniform-cost graph search algorithm in the uniformCostSearch functionin uninformed_search.py .

Incorporating goal information

How to efficiently solve search problems with
variable-cost actions, using information
about the goal state?

» Heuristics
» Greedy approach
» A* search

Search Heuristics

A function that estimates how close a state is to a goal /\\\
NOPE=S T\ GoaLt

Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

Heuriski —Tron J
Note that the heuristic is a property

of the state, not the action taken to |
get to the state! / /;1\\\
NoPE. GoAL'.

< -—-f '
l >

Heuristi — Tron J

Pancake Heuristics

Heuristic 1: the number of pancakes that are out of place

Start 3

h(x)

Pancake Heuristics

Heuristic 2: how many pancakes are on top of a smaller pancake?

Start 2

h(x)

Pancake Heuristics

Heuristic 3: All zeros (aka null heuristic, or "l like waffles better anyway”)

Start 0

h(x)

Straight-line Heuristic in Romania

] Vaslui

Timisoara

Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

N Eforie
] Giurgiu

ﬁtmight—line distance \

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
lasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

J

h(x)

Greedy Search

* Expand the node that seems closest...

Greedy
o Cost: 450

Optimal
o Cost: 418

Greedy Straight-Line Search in Romania

Timisoara

11

] Mehadia
75

Dobreta [J

30
Rimn Vilcea
B N

o

] Giurgiu

85 [
o —

[|

90

92

] Vaslui

] Hirsova

Eforie

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

-

6tmight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
80
199
374

J

h(x)

Greedy Search

 Strategy: expand a node that you think is
closest to a goal state

* Heuristic: estimate of distance to nearest goal for
each state

* A common case:;

. Bes’lc-first takes you straight to the (non-optimal)
g0a

e Worst-case: like a badly-guided DFS

* What goes wrong?
* Doesn’t take real path cost into account

Next class

A¥* search

