
Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).

Breadth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy:	expand	a	
shallowest	node	first

Implementation:	Fringe	
is	a	FIFO	queue

Depth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy:	expand	a	
deepest	node	first

Implementation:	
Fringe	is	a	LIFO	stack

DFS	vs	BFS

Iterative	Deepening

…
b

• Idea:	get	DFS’s	space	advantage	with	BFS’s	
time	/	shallow-solution	advantages
• Run	a	DFS	with	depth	limit	1.		If	no	solution…
• Run	a	DFS	with	depth	limit	2.		If	no	solution…
• Run	a	DFS	with	depth	limit	3.		…..

• Isn’t	that	wastefully	redundant?
• Generally	most	work	happens	in	the	lowest	level	
searched,	so	not	so	bad!

Python Code for Iterative	Deepening

Cost-Sensitive	Search

BFS	finds	the	shortest	path	in	terms	of	number	of	actions.
It	does	not	find	the	least-cost	path.		We	will	now	cover
a	similar	algorithm	which	does	find	the	least-cost	path.		

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform	Cost	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy:	expand	a	cheapest	
node	first:

Fringe	is	a	priority	queue	
(priority:	cumulative	cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2

…

Uniform	Cost	Search	(UCS)	Properties

• What	nodes	does	UCS	expand?
• Processes	all	nodes	with	cost	less	than	cheapest	solution!
• If	that	solution	costs	C* and	arcs	cost	at	least	e , then	the	
“effective	depth”	is	roughly	C*/e

• Takes	time	O(bC*/e)	(exponential	in	effective	depth)

• How	much	space	does	the	fringe	take?
• Has	roughly	the	last	tier,	so	O(bC*/e)

• Is	it	complete?
• Assuming	best	solution	has	a	finite	cost	and	minimum	arc	cost	
is	positive,	yes!

• Is	it	optimal?
• Yes!	(skipping	the	proof	for	now)

b

C*/e “tiers”
c	£ 3

c	£ 2
c	£ 1

Uniform	Cost	Issues

• Remember:	UCS	explores	increasing	cost	
contours

• The	good:	UCS	is	complete	and	optimal!

• The	bad:
• Explores	options	in	every	“direction”
• No	information	about	goal	location

• We’ll	fix	that	soon!
Start Goal

…

c	£ 3
c	£ 2

c	£ 1

BFS/DFS/UCS

• Breadth-first	search
• Good:	optimal,	works	well	when	many	options,	but	not	many	actions	required
• Bad:	assumes	all	actions	have	equal	cost

• Depth-first	search
• Good:	memory-efficient,	works	well	when	few	options,	but	lots	of	actions	
required
• Bad:	not	optimal,	can	run	infinitely,	assumes	all	actions	have	equal	cost

• Uniform-cost	search
• Good:	optimal,	handles	variable-cost	actions
• Bad:	explores	all	options,	no	information	about	goal	location Basically	Dijkstra’s	

Algorithm!	

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy:	expand	a	cheapest	
node	first:

Fringe	is	a	priority	queue	
(priority:	cumulative	cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2

Dijkstra‘s	algorithm (Uniform-cost search)

Search	example:	Pancake	Problem

Rule: a spatula can	be	inserted	at	any	interval and	flip	all	pancakes	above	it.
Cost:	Number	of	pancakes flipped.

Pancake	BFS

Draw it by yourself!

Pancake	UCS

Draw it by yourself!

Pancake	DFS

3

2

4

3

3

2

2

2

4

State	space	graph	with	costs	as	weights

3
4

3

4

2

Start

Goal

3
Cost:	16
#	Steps:	6

Pancake	Optimal

3

2

4

3

3

2

2

2

4

State	space	graph	with	costs	as	weights

3
4

3

4

2

Start

Goal

3
Cost:	7
#	Steps:	2

Project 1: Search (due 09/13)

Incorporating	goal	information

How	to	efficiently solve	search	problems	with	
variable-cost	actions,	using	information	

about	the	goal	state?

Ø Heuristics
Ø Greedy	approach
Ø A*	search

Search	Heuristics

§ A	heuristic	is:
§ A	function	that	estimates how	close	a	state	is	to	a	goal
§ Designed	for	a	particular	search	problem
§ Examples:	Manhattan	distance,	Euclidean	distance	for	

pathing

10

5

11.2

Note that	the	heuristic	is	a	property	
of	the	state,	not	the	action	taken	to	
get	to	the	state!

Pancake	Heuristics

Heuristic	1:	the	number	of	pancakes that	are out	of	place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)
Start

Goal

Pancake	Heuristics

Heuristic	2:	how	many	pancakes	are	on	top	of	a	smaller	pancake?

1
2

0

1

1

1

1

2

2

1

1

2

1

h(x)
Start

Goal

Pancake	Heuristics

Heuristic	3:	All	zeros	(aka	null	heuristic,	or	”I	like	waffles	better	anyway”)

0
0

0

0

0

0

0

0

0

0

0

0

0

h(x)
Start

Goal

Straight-line	Heuristic	in	Romania

h(x)

Greedy	Search

Greedy	Straight-Line	Search	in	Romania

h(x)

Greedy
o Cost:	450

Optimal
o Cost:	418

• Expand	the	node	that	seems	closest…

Greedy	Search

• Strategy:	expand	a	node	that	you	think	is	
closest	to	a	goal	state
• Heuristic:	estimate	of	distance	to	nearest	goal	for	
each	state

• A	common	case:
• Best-first	takes	you	straight	to	the	(non-optimal)	
goal

• Worst-case:	like	a	badly-guided	DFS

• What	goes	wrong?
• Doesn’t	take	real path	cost	into	account

…
b

…
b

Next class

A*	search

