
Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Python Programming

Source: Beazley,	David;	Jones,	Brian	K.	(2013). Python	Cookbook (3rd	ed.).



Search	Heuristics

§ A	heuristic	is:
§ A	function	that	estimates how	close	a	state	is	to	a	goal
§ Designed	for	a	particular	search	problem
§ Examples:	Manhattan	distance,	Euclidean	distance	for	

pathing

10

5

11.2

Note that	the	heuristic	is	a	property	
of	the	state,	not	the	action	taken	to	
get	to	the	state!



Pancake	Heuristics

Heuristic	1:	the	number	of	the	largest	pancake	that	is	still	out	of	place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)
Start

Goal



Pancake	Heuristics

Heuristic	2:	how	many	pancakes	are	on	top	of	a	smaller	pancake?

1
2

0

1

1

1

1

2

2

1

1

2

1

h(x)
Start

Goal



Pancake	Heuristics

Heuristic	3:	All	zeros	(aka	null	heuristic,	or	”I	like	waffles	better	anyway”)

0
0

0

0

0

0

0

0

0

0

0

0

0

h(x)
Start

Goal



Greedy	Search



Straight-line	Heuristic	in	Romania

h(x)



Greedy	Straight-Line	Search	in	Romania

h(x)

Greedy
o Cost:	450

Optimal
o Cost:	418

• Expand	the	node	that	seems	closest…



Greedy	Search

• Strategy:	expand	a	node	that	you	think	is	
closest	to	a	goal	state
• Heuristic:	estimate	of	distance	to	nearest	goal	for	
each	state

• A	common	case:
• Best-first	takes	you	straight	to	the	(non-optimal)	
goal

• Worst-case:	like	a	badly-guided	DFS

• What	goes	wrong?
• Doesn’t	take	real path	cost	into	account

…
b

…
b



A*	Search



Combining	UCS	and	Greedy

• Uniform-cost orders	by	path	cost,	or	backward	cost		g(n)
• Greedy orders	by	goal	proximity,	or	forward	cost		h(n)

• A*	Search orders	by	the	sum:	f(n)	=	g(n)	+	h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example:	Teg Grenager

S

a

b

c

ed

dG

G

g =	0	
h=6

g =	1	
h=5

g =	2	
h=6

g =	3	
h=7

g =	4	
h=2

g =	6	
h=0

g =	9	
h=1

g =	10	
h=2

g =	12	
h=0



When	should	A*	terminate?

• Should	we	stop	when	we	enqueue a	goal?

• No:	only	stop	when	we	dequeue a	goal

S

B

A

G

2

3

2

2
h	=	1

h	=	2

h	=	0h	=	3



Is	A*	Optimal?

• What	went	wrong?
• Actual	cost	of	bad	path	<	estimated	cost	of	optimal	path
• We	need	estimates	to	be	less	than	actual	costs!

A

GS

1 3
h	=	6

h	=	0

5

h =	7



Admissible	Heuristics



Idea:	Admissibility

Inadmissible	(pessimistic)	heuristics	break	
optimality	by	trapping	good	plans	on	the	fringe

Admissible	(optimistic)	heuristics	slow	down	
bad	plans	but	never	outweigh	true	costs



Admissible	Heuristics

• A	heuristic	h is	admissible (optimistic)	if:

where															is	the	true	cost	to	a	nearest	goal

• Examples:

• Coming	up	with	admissible	heuristics	is	most	of	what’s	involved	in	using	A*	
in	practice.

4
15



Optimality	of	A*	Tree	Search



Optimality	of	A*	Tree	Search

Assume:
• A	is	an	optimal	goal	node
• B	is	a	suboptimal	goal	node
• h	is	admissible

Claim:

• A	will	exit	the	fringe	before	B

…



Optimality	of	A*	Tree	Search

Proof:
• Imagine	B	is	on	the	fringe
• Some	ancestor	n of	A	is	on	the	
fringe,	too	(maybe	A!)
• Claim:	n will	be	expanded	before	B

1. f(n)	is	less	or	equal	to	f(A)

Definition	of	f-cost
Admissibility	of	h

…

h	=	0	at	a	goal

g(n) =	backward	
(path)	cost

h(n) =	forward	
(heuristic)	cost



Optimality	of	A*	Tree	Search

Proof:
• Imagine	B	is	on	the	fringe
• Some	ancestor	n of	A	is	on	the	
fringe,	too	(maybe	A!)
• Claim:	n will	be	expanded	before	B

1. f(n)	is	less	or	equal	to	f(A)
2. f(A)	is	less	than	f(B)

B is	suboptimal
h	=	0	at	a	goal

…g(n) =	backward	
(path)	cost

h(n) =	forward	
(heuristic)	cost



Optimality	of	A*	Tree	Search

Proof:
• Imagine	B	is	on	the	fringe
• Some	ancestor	n of	A	is	on	the	
fringe,	too	(maybe	A!)
• Claim:	n will	be	expanded	before	B

1. f(n)	is	less	or	equal	to	f(A)
2. f(A)	is	less	than	f(B)
3. n expands	before	B

• All	ancestors	of	A	expand	before	B
• A	expands	before	B
• A*	search	is	optimal

…g(n) =	backward	
(path)	cost

h(n) =	forward	
(heuristic)	cost



Corollary:	Optimality	of	UCS

A*	search	is	optimal,	given	an	admissible	heuristic	h

UCS	is	equivalent	to	A*	with	null	heuristic	h(n)	=	0

ü Definitely	admissible!

Therefore,	UCS	is	also	optimal.



Next Class

Adversarial Search


