Python Programming

>>> text = 'UPPER PYTHON, lower python, Mixed Python'
>>> re.findall('python', text, flags=re.IGNORECASE)
['PYTHON', 'python', 'Python']

>>> re.sub('python', 'snake', text, flags=re.IGNORECASE)
'"UPPER snake, lower snake, Mixed snake'

def matchcase(word):
def replace(m):
text = m.group()
if text.isupper():
return word.upper()
elif text.islower():
return word. lower()
elif text[0].isupper():
return word.capitalize()
else:
return word
return replace

>>> re.sub('python', matchcase('snake'), text, flags=re.IGNORECASE)
'"UPPER SNAKE, lower snake, Mixed Snake'

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> str_pat = re.compile(r'\"(.*)\"")

>>> textl = 'Computer says "no."'

>>> str_pat.findall(text1)

['no."']

>>> text2 = 'Computer says "no." Phone says "yes."'

>>> str_pat.findall(text2)
['no." Phone says "yes.']
>>>

>>> str_pat = re.compile(r'\"(.*?)\"")
>>> str_pat.findall(text2)

['no.', 'yes.']

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> comment = re.compile(r'/*(.*?)*/")
>>> textl = '/* this is a comment */'
>>> text2 = '''/* this is a

multiline comment */

>>>

>>> comment.findall(text1)
[' this is a comment ']
>>> comment.findall(text2)

[]

>>> comment = re.compile(r'/*((?:.|\n)*?2)*/")
>>> comment.findall(text2)
[' this 1s a\n multiline comment ']

>>> comment = re.compile(r'/*(.*?)*/', re.DOTALL)
>>> comment.findall(text2)

['" this 1s a\n multiline comment ']

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> s1 = 'Spicy Jalape\u0ofio' >>> import unicodedata

>»> s2 = 'Spicy Jalapen\u3630' >>> t1 = unicodedata.normalize('NFC', s1)

>>> s1 >>> t2 = unicodedata.normalize('NFC', s2)

'Spicy Jalapefio' >>> 11 == t2

>>> s2 True

'Spicy Jalapefio' >>> print(ascii(tl))

55> §1 == §2 'Spicy Jalape\xfilo'

False

>>> len(s1) >>> t3 = unicodedata.normalize('NFD', s1)

14 >>> t4 = unicodedata.normalize('NFD', s2)
>>> t3 == t4

>>> len(s2)
15 True

>>> print(ascii(t3))
'Spicy Jalapen\u03030'

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> s = "\ufbo1' # A single character
55> S

lfil

>>> unicodedata.normalize('NFD', s)

lﬁl

Notice how the combined letters are broken apart here
>>> unicodedata.normalize('NFKD', s)

lf.i'l

>>> unicodedata.normalize('NFKC', s)

lf.‘Ll

>>>

>>> t1 = unicodedata.normalize('NFD', s1)

>>> '',join(c for c in t1 if not unicodedata.combining(c))
'Spicy Jalapeno'
>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> import re

>>> num = re.compile('\d+")

>>> # ASCII digits

>>> num.match('123")

<_sre.SRE_Match object at 0x1007d9ed0O>

>>> # Arabic digits
>>> num.match('\u0661\u0662\ud663')
<_sre.SRE_Match object at 0x101234030>

>>> arabic = re.compile('[\u0600-\u06ff\u0750-\ud77f\u08ad-\ue8ff]+')

>>> pat = re.compile('stra\u@@dfe', re.IGNORECASE)

>>> s = 'strale'

>>> pat.match(s) # Matches
<_sre.SRE_Match object at 0x10069d370>

>>> pat.match(s.upper()) # Doesn't match
>>> s.upper() # Case folds
'STRASSE'

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> # Whitespace stripping
>»> 5 = hello world \n'
>>> s.strip()

'"hello world'

>>> s.lstrip()

'hello world \n'

>>> s.rstrip()

! hello world'

>>>

>>> # Character stripping

>»> t = '----- hello====="'
>>> t.lstrip('-")
"hello====="

>>> t.strip('-=")

'"hello'’

>>>

>»> s = ' hello world
>>> s = s.strip()

>>> S

"hello world'

>>>

>>> s.replace(' ', '")
"helloworld'

>>> import re

>>> re.sub('\s+', ' ', s)
"hello world'

>>>

with open(filename) as f:

\n'

lines = (line.strip() for line in f)

for 1line in lines:

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> remap = {
ord('\t') : " ',

>>> s = 'pythén\fis\tawesome\r\n' s ord('\f') : ' ',
>>> S cee ord('\r') : None # Deleted
'python\x0cis\tawesome\r\n' o}
>>> >>> a = s.translate(remap)
>>> 4
'python is awesome\n'
>>>

>>> import unicodedata

>>> import sys

>>> cmb_chrs = dict.fromkeys(c for c in range(sys.maxunicode)
if unicodedata.combining(chr(c)))

>>> b = unicodedata.normalize('NFD', a)
>>> b

'pythoA is awesome\n'

>>> b.translate(cmb_chrs)

'python is awesome\n'

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> digitmap = { c: ord('0') + unicodedata.digit(chr(c))
for c in range(sys.maxunicode)
if unicodedata.category(chr(c)) == 'Nd' }

>>> len(digitmap)

460

>>> # Arabic digits

>>»>> X = '\u0661\u0662\u0663'
>>> X.translate(digitmap)

'123'

>>>
>>> a def clean_spaces(s):
'python is awesome\n' s = s.replace('\r', '")
>>> b = unicodedata.normalize('NFD', a) s = s.replace('\t', " ')
>>> b.encode('ascii', 'ignore').decode('ascii') s = s.replace('\f', " ')
'python is awesome\n' return s

>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Python Programming

>>> text = 'Hello World’ >>> format(text, '=>20s')
>>> text.ljust(20) '=========Hello World"'
'"Hello World '
>>> text.rjust(20)

>>> format(text, '*720s')

Hello World' 'xxkkHello World*#**x'

>>> text.center(20)

' Hello World ' >>> '{:>10s} {:>10s}'.format('Hello', 'World")
>>> ' Hello World'

>>> text.rjust(20,'=") 7>
=========Hello World'

o >>»> X = 1.2345
>>> text.center(20,'*")

"*%%*Hello World*****! T>> fgfggzgf, >18°)

22> fornat(text, '520') 2> format(x, 1°10.21")

' Hello World' ’

>>> format(text, '<20'") >>> '%-20s' % text

'"Hello World ! '"Hello World '

>>> format(text, '~20'") >>> '%20s' % text

: Hello World ! ' Hello World'
>>>

Source: Beazley, David; Jones, Brian K. (2013). Python Cookbook (3rd ed.).

Artificial Intelligence

Logical Agents

In which we design agents that can
form representations of the world,
use a process of inference to derive
new representations about the world,
and use these new representations to
deduce what to do.

12

Knowledge-Based Logical Agents

* Two central Al concepts
— Representation of knowledge

— Reasoning processes acting on knowledge

e Play crucial role in “Partially Observable”
environments

— Combine general knowledge with current percepts to
infer hidden aspects before acting

* Aids 1n agent flexibility

— Learn new knowledge for new tasks

— Adapt to changes in environment by updating relevant
knowledge

13

Logic

* For logical agents, knowledge 1s definite

— Each proposition is either “True” or “False”

* Logic has advantage of being simple
representation for knowledge-based agents
— But limited 1n 1ts ability to handle uncertainty

* We will examine propositional logic and
first-order logic

14

Knowledge Base

* Central component 1s its knowledge base (KB)

— Contains set of “sentences’ or factual statements

« Some assertions about the world expressed with a knowledge
representation language

— KB 1nitially contains some background knowledge
 Innate knowledge

 How to add new information to KB?
— TELL function
— Inference: deriving new sentences from old ones

 How to query what 1s known?
— ASK function

— Answers should follow what has been told to the KB
previously

15

A Simple Knowledge-Based Agent

* Agent needs to know

— Current state of world

— How to infer unseen properties of world
from percepts

— How world evolves over time
— What it wants to achieve

— What its own actions do in various
circumstances

16

“Wumpus World” Environment

Simple environment to motivate logical reasoning

Agent explores cave with rooms connected by
passageways

“Wumpus” beast lurking somewhere in cave
— Eats anyone who enters its room
— Agent has one arrow (can kill Wumpus)

Some rooms contain bottomless pits
Occasional heap of gold present
Agent task

— Enter cave, find the gold, return to entrance, and exit

17

Wumpus World PEAS
Description

* (P)erformance measure
— Receive +1000 for picking up gold

— Cost of —1000 for falling into pit or being eaten by
Wumpus (GAME OVER!)

— Cost of —1 for each action taken
— Cost of =10 for using up the only arrow

* (E)nvironment
— 4x4 grid of rooms
— Agent starts in square [1,1]
— Wumpus and gold locations chosen randomly
— Probability of square being a pit is .2
* [0=no, ..., 0.5=maybe, ..., |=yes]

18

Wumpus World PEAS

Description

* (A)ctuators
— Move forward, turn left, turn right

* Note: die if enter pit or live wumpus square

— Grab (gold)

— Shoot (arrow)
« Kills wumpus if facing its square

* (S)ensors
— Nose: squares adjacent to wumpus are “smelly”
— Skin/hair: Squares adjacent to pit are “breezy

— Eye: “Glittery” if and only if gold is in the same
square

— Percepts: [Stench, , Glitter]

Wumpus World

s=== AL

Stench b
reeze

728\
Lion = wumpus —— @ &
===
Stench
breeze
N

Start

Wumpus World Characterization

* Is the world deterministic?

— Yes, outcomes exactly specified
* Is the world fully observable?
— No, only local percepts

e Is the world static?

— Yes, Wumpus and pits do not move (though
would be interesting!)

 Is the world discrete?
— Yes, blocks/cells

21

Exploring a Wumpus World

A = agent

B = breeze

G = glitter, gold
OK = safe square

P = pit

S = stench OK

V = visited

W = Wumpus OK OK

A

From local percepts, determines that {(1,1), (1,2),
(2,1)} are free from danger.

Exploring a Wumpus World

A = agent

B = breeze

G = glitter, gold
OK = safe square

P = pit

S = stench OK
V = visited

W = Wumpus OK

V_

OK

— | A

B

From breeze percept, determines that (2,2) or (3,1)
1s a pit. Go back to (1,1) and move up to (1,2).

23

Exploring a Wumpus World

A = agent

B = breeze

G = glitter, gold
OK = safe square

W
P = pit ;;g

S = stench OK_ S |OK
.. A R?
V = visited "
W = Wumpus OK OK
\ \Y PIT

From stench and no-breeze percept in (1,2), determines
that Wumpus 1n (1,3), pit in (3,1), and (2,2) clear.

24

Exploring a Wumpus World

A = agent

B = breeze

G = glitter, gold

Y| OK
OK = safe square
P = pit

S = stench OK §|OK OK
o V —S | A

V = visited

W = Wumpus OK 0K

Vv \Y PIT

From local percepts, 1t 1s OK to move up or right.

Exploring a Wumpus World

A = agent

B = breeze

G = glitter, gold

OK = safe square

P = pit

S = stench OK

V = visited

W = Wumpus OK 0K
\% \% PIT

Found gold! No need to explore further. Time to
head back.

Exploring a Wumpus World

A = agent

B = breeze

G = glitter, gold

OK = safe square P?
P = pit
S = stench OK
V = visited
W = Wumpus OK 0K
V|, \Y4 PIT

_ l
n
>

Then go home using OK squares (retrace route).

Tight Spots

OK B
—— A

o
> o[

Breeze in (1,2) and (2,1) — no safe actions!

Pit may actually only be in (2,2), but can’ t tell.

More Tight Spots

Smell in (1,1) — Cannot move!

Possible action: shoot arrow straight ahead

29

Online Examples

Status
Facing: north
X1

) (23

Arrow: 1
Gold: 0
Wumpus: alive

Sensing data

Stench: N
Breeze: N
Glitter: N

Scream: N

Actions Performed

enter

l Start l Edit

I New

Wumpus world
PIT NN
N
\\\I///
-~

30

Logical Agent

* Need agent to represent beliefs

11

— “There is a pitin (2, 2) or (3, 1)”

(11

— “There is no Wumpus in (2, 2)”

e Need to make inferences

— If available information 1s correct, draw a
conclusion that is guaranteed to be correct

* Need representation and reasoning

— Support the operation of knowledge-based
agent

31

Knowledge Representation

* For expressing knowledge in computer-
tractable form

« Knowledge representation language defined by

— Syntax

* Defines the possible well-formed configurations of
sentences 1n the language

— Semantics
e Defines the “meaning” of sentences (need interpreter)

 Defines the truth of a sentence in a world (or model)

32

Provided the syntax and
semantics are defined precisely,
the language 1s called a logic

33

The Language of Arithmetic

Syntax: “x+ 2>y’ is a sentence

“x2 +y>"is not a sentence

Semantics: x + 2 > y 1s true 1ff the number x +
2 1s no less than the number y

x + 2 >yis True in a world where x=7, y=1
x + 2 >y 1s False in a world where x=0, y=6

34

Entailment

Want to generate new sentences that are
necessarily true, given that old sentences are true

Entailment has one fact following logically from
another

KB |=a

— Knowledge base (KB) “entails” sentence o
 If o 1s true in all worlds where KB is true

— The truth of a 1s contained in the truth of the KB

The KB containing “ The Giants won and “The
Reds won’ entails “Either the Giants won or the
Reds won’

35

Inference Procedure

— “a is derived from KB by inference algorithm i

* Record of inference procedure operations 1s
called a proof

 Inference procedure is complete if can find
proof for any sentence that 1s entailed

36

Entailment and Inference

 Consider KB as a “haystack™ and o as a
“needle”

« Entailment is like the needle “being” in the
haystack

* Inference is like “finding” the needle in the
haystack

37

Inference

« Sentence 1s valid iff 1t 1s true under all possible
interpretations 1n all possible worlds

— Also called tautologies
— “There is a stench at (1,1) or there is not a stench at

(1 , 1)”
— “There is an open area in front of me” is not valid in all
worlds
* Sentence 1s satisfiable 1ff there 1s some
interpretation in some world for which 1t 1s true
— “There is a wumpus at (1,2)” could be true in some
situation

— “There is a wall in front of me and there is no wall in
front of me” is unsatisfiable 38

Summary

Intelligent agents need knowledge about the world
and a means to reach good decisions

— Representation of knowledge

— Reasoning processes acting on knowledge

Knowledge 1s contained 1n the form of sentences

in a knowledge representation language that are
stored 1n a knowledge base (KB)

Representation language defined by syntax and
semantics

— Structure and meaning

Inference 1s deriving new sentences from old ones
39

