
Q1. CSP Futoshiki

Futoshiki is a Japanese logic puzzle that is very simple,
but can be quite challenging. You are given an n x n

grid, and must place the numbers 1, . . . n in the grid such
that every row and column has exactly one of each. Ad-
ditionally, the assignment must satisfy the inequalities
placed between some adjacent squares.

To the right is an instance of this problem, for size
n = 4. Some of the squares have known values, such
that the puzzle has a unique solution. (The letters mean
nothing to the puzzle, and will be used only as labels
with which to refer to certain squares). Note also that in-
equalities apply only to the two adjacent squares, and do
not directly constrain other squares in the row or column.
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Let’s formulate this puzzle as a CSP. We will use 42 variables, one for each cell, with Xij as the variable for the cell
in the ith row and jth column (each cell contains its i, j label in the top left corner). The only unary constraints
will be those assigning the known initial values to their respective squares (e.g. X34 = 3).

(a) Complete the formulation of the CSP using only binary constraints (in addition to the unary constraints
specificed above. In particular, describe the domains of the variables, and all binary constraints you think are
necessary. You do not need to enumerate them all, just describe them using concise mathematical notation.
You are not permitted to use n-ary constraints where n � 3.

(b) After enforcing unary constraints, consider the binary constraints involving X14 and X24. Enforce arc consis-
tency on just these constraints and state the resulting domains for the two variables.

(c) Suppose we enforced unary constraints and ran arc consistency on this CSP, pruning the domains of all variables
as much as possible. After this, what is the maximum possible domain size for any variable? [Hint: consider
the least constrained variable(s); you should not have to run every step of arc consistency.]

(d) Suppose we enforced unary constraints and ran arc consistency on the initial CSP in the figure above. What
is the maximum possible domain size for a variable adjacent to an inequality?

(e) By inspection of column 2, we find it is necessary that X32 = 1, despite not having found an assignment to
any of the other cells in that column. Would running arc consistency find this requirement? Explain why or
why not.
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Q2. CSPs: Properties
(a) When enforcing arc consistency in a CSP, the set of values which remain when the algorithm terminates does

not depend on the order in which arcs are processed from the queue.

True False

(b) In a general CSP with n variables, each taking d possible values, what is the maximum number of times a
backtracking search algorithm might have to backtrack (i.e. the number of the times it generates an assignment,
partial or complete, that violates the constraints) before finding a solution or concluding that none exists? (circle
one)

0 O(1) O(nd2) O(n2
d
3) O(dn) 1

(c) What is the maximum number of times a backtracking search algorithm might have to backtrack in a general
CSP, if it is running arc consistency and applying the MRV and LCV heuristics? (circle one)

0 O(1) O(nd2) O(n2
d
3) O(dn) 1

(d) What is the maximum number of times a backtracking search algorithm might have to backtrack in a tree-

structured CSP, if it is running arc consistency and using an optimal variable ordering? (circle one)

0 O(1) O(nd2) O(n2
d
3) O(dn) 1

(e) Constraint Graph Consider the following constraint graph:

In two sentences or less, describe a strategy for e�ciently solving a CSP with this constraint structure.
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