
Q1. CSP Futoshiki

Futoshiki is a Japanese logic puzzle that is very simple,

but can be quite challenging. You are given an n x n

grid, and must place the numbers 1, . . . n in the grid such

that every row and column has exactly one of each. Ad-

ditionally, the assignment must satisfy the inequalities

placed between some adjacent squares.

To the right is an instance of this problem, for size

n = 4. Some of the squares have known values, such

that the puzzle has a unique solution. (The letters mean

nothing to the puzzle, and will be used only as labels

with which to refer to certain squares). Note also that in-

equalities apply only to the two adjacent squares, and do

not directly constrain other squares in the row or column.
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Let’s formulate this puzzle as a CSP. We will use 4
2
variables, one for each cell, with Xij as the variable for the cell

in the ith row and jth column (each cell contains its i, j label in the top left corner). The only unary constraints

will be those assigning the known initial values to their respective squares (e.g. X34 = 3).

(a) Complete the formulation of the CSP using only binary constraints (in addition to the unary constraints

specificed above. In particular, describe the domains of the variables, and all binary constraints you think are

necessary. You do not need to enumerate them all, just describe them using concise mathematical notation.

You are not permitted to use n-ary constraints where n � 3.

Domains: Xij 2 {1, 2, 3, 4}, 8i, j
Unary constraints: X34 = 3, X43 = 2

Inequality binary constraints: X11 < X12, X13 < X23, X14 < X24, X32 < X22, X32 < X42

Row binary contraints: Xij 6= Xik, 8i, j, k, j 6= k

Column binary contraints: Xij 6= Xkj , 8i, j, k, i 6= k

(b) After enforcing unary constraints, consider the binary constraints involving X14 and X24. Enforce arc con-

sistency on just these constraints and state the resulting domains for the two variables. X14 2 {1, 2},
X24 2 {2, 4}. Note that both threes are removed from the column constraint with X34.

(c) Suppose we enforced unary constraints and ran arc consistency on this CSP, pruning the domains of all variables

as much as possible. After this, what is the maximum possible domain size for any variable? [Hint: consider

the least constrained variable(s); you should not have to run every step of arc consistency.] The maximum

possible domain size is 4 (ie, no values are removed from the original domain). Consider X21 – we will not be

able to eliminate any values from its domain through arc consistency.

(d) Suppose we enforced unary constraints and ran arc consistency on the initial CSP in the figure above. What

is the maximum possible domain size for a variable adjacent to an inequality? The maximum domain size is

3 – you must always eliminate either 1 or 4 from a variable participating in an inequality constraint.

(e) By inspection of column 2, we find it is necessary that X32 = 1, despite not having found an assignment to

any of the other cells in that column. Would running arc consistency find this requirement? Explain why or

why not. No, arc consistency would not find this requirement. Encorcing the X32 ! X42 and the X42 ! X43

arc leaves X42 with a domain of {3, 4}. Enforcing the X32 < X22 constraints leaves X32 2 {1, 2, 3} and

X22 2 {2, 3, 4}. Enforcing that they are all di↵erent does not remove any values. After this point, every arc in

this column is consistent and X32 is not required to be 1.
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Q2. CSPs: Properties
(a) When enforcing arc consistency in a CSP, the set of values which remain when the algorithm terminates does

not depend on the order in which arcs are processed from the queue.

True False

(b) In a general CSP with n variables, each taking d possible values, what is the maximum number of times a

backtracking search algorithm might have to backtrack (i.e. the number of the times it generates an assignment,

partial or complete, that violates the constraints) before finding a solution or concluding that none exists? (circle

one)
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In general, the search might have to examine all possible assignments.

(c) What is the maximum number of times a backtracking search algorithm might have to backtrack in a general

CSP, if it is running arc consistency and applying the MRV and LCV heuristics? (circle one)
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The MRV and LCV heuristics are often helpful to guide the search, but are not guaranteed to reduce back-

tracking in the worst case.

In fact, CSP solving is NP-complete, so any polynomial-time method for solving general CSPs would consititute

a proof of P = NP (worth a million dollars from the Clay Mathematics Institute!).

(d) What is the maximum number of times a backtracking search algorithm might have to backtrack in a tree-

structured CSP, if it is running arc consistency and using an optimal variable ordering? (circle one)
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Applying arc consistency to a tree-structured CSP guarantees that no backtracking is required, if variables are

assigned starting at the root and moving down towards the leaves.

(e) Constraint Graph Consider the following constraint graph:

In two sentences or less, describe a strategy for e�ciently solving a CSP with this constraint structure.

Loop over assignments to the variable in the middle of the constraint graph. Treating this node as a cutset,

the graph becomes four independent tree-structured CSPs, each of which can be solved e�ciently.
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