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BackPropagation Refresher

@)

f(x; W)

X

y=f(x;W)
C =Loss(y,ysr)

SGD Update
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Multiple Layers

Y= f1(x§W1)
v, =L W,)
C =Loss(y,,Ysr)

SGD Update
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Chain Rule for Gradient Computation

Y= f1(X;W1)
Y, = L W,)
C C =Loss(y,,Ysr)
f _ac ac
v, Find :
T oW, oW,
oy, W) dC _( 9C |( 9y,
A oW, dy, )\ W,
Y1
A oC (oC \( oy,
f.(x; W,) 8W1 \E)yl E)Wl
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Application of the Chain Rule \/




Chain Rule for Gradient Computation

Given: (%—C)
. oC

oC
We are interested in computing: (—j,( )

Y ow )\ ax
T Intrinsic to the layer are:
f(x; W)
| ( )— How does output change due to params
X

( ) — How does output change due to inputs

S-S



Chain Rule for Gradient Computation

Given: B_C
dy
We are interested in computing: (B_Cj (B_C)
PEERS- L ow ) ax
Intrinsic to the layer are:

( )— How does output change due to params

( ) — How does output change due to inputs

S-S

Equations for common layers: http://arunmallya.github.io/writeups/nn/backprop.html




Extension to Computational Graphs

Y1 Yo
y f !
T f,(ys Wy) fo(y: W)
f(x; W) 1\ T
T y y
X
f(x; W)



Extension to Computational Graphs

s S 5
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Extension to Computational Graphs

o B E

!
\L fl(y; Wl) fz(y; Wg)
f(x; W) \L \L
! (aij (BL)
5) E >
0x > Gradient Accumulat ion
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BackPropagation Through Time
(BPTT)

One of the methods used to train RNNs

The unfolded network (used during forward pass) is
treated as one big feed-forward network

This unfolded network accepts the whole time series as
Input

The weight updates are computed for each copy in the
unfolded network, then summed (or averaged) and then
applied to the RNN weights



>0

The Unfolded Vanilla RNN

Treat the unfolded network as one
big feed-forward network!

This big network takes in entire
sequence as an input

Compute gradients through the
usual backpropagation

Update shared weights



The Unfolded Vanilla RNN Forward



The Unfolded Vanilla RNN Backward
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The Vanilla RNN Backward

X
C Cs htztanhW( tj
v v h,_,
i ¢ % =F@)
C, = Loss(y,,GT)
! ¢
h, hs
l l act_(act](aytj
oh, | 9y, )\ on
J J | |

R N e ey



Issues with the Vanilla RNNs

* In the same way a product of k real numbers can shrink to
zero or explode to infinity, so can a product of matrices

* |t is sufficient for A, <1/y, where A4, is the largest singular
value of W, for the vanishing gradients problem to occur
and it is necessary for exploding gradients that A, >1/v,
where y =1 for the tanh non-linearity and y =1/4 for the
sigmoid non-linearity 1

 Exploding gradients are often controlled with gradient
element-wise or norm clipping

1 On the difficulty of training recurrent neural networks, Pascanu et al., 2013




Recall

The ldentity Relationship
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C. =Loss(y,,GT)

e Suppose that instead of a matrix multiplication, we had an

iIdentity relationship between the hidden states

h =h_ +F(x)

-

oh,
oh

t—1

-

 The gradient does not decay as the error Is propagated all

the way back aka “Constant Error Flow”



Recall

The ldentity Relationship
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C. =Loss(y,,GT)

e Suppose that instead of a matrix multiplication, we had an

-

iIdentity relationship between the hidden states
h =h_ +F(x)

Remember Resnets?
oh,
oh

t—1
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 The gradient does not decay as the error Is propagated all

the way back aka “Constant Error Flow”



Disclaimer

 The explanations in the previous few slides are handwavy

e For rigorous proofs and derivations, please refer to
On the difficulty of training recurrent neural networks, Pascanu et al., 2013

| ong Short-Term Memory, Hochreiter et al., 1997
And other sources




Long Short-Term Memory (LSTM)!

e The LSTM uses this idea of “Constant Error Flow" for
RNNs to create a “Constant Error Carousel” (CEC) which
ensures that gradients don’'t decay

 The key component is a memory cell that acts like an
accumulator (contains the identity relationship) over time

e [nstead of computing new state as a matrix product with
the old state, 1t rather computes the difference between

them. Expressivity Is the same, but gradients are better
behaved

1 Long Short-Term Memory, Hochreiter et al., 1997




The LSTM ldea

Xy \WI Cell I
> G —>
h, /7 T .':
_|_l«

X
t
c,=c,_,+t tanhW( j h, = tanhc,
ht—l
" Dashed line indicates time-lag



The Original LSTM Cell

Xy P Xt hy
Input Gate /t Output Gate o,
X, W Cell
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The Popular LSTM Caell

Xt hy
Iy

Input Gate
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Xt hy
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Output Gate

R

S

X
c,=f®c_ +1i ®tanhW(h t ]
t—1

N G > [ —>X—> b

()



Summary

RNNs allow for processing of variable length inputs and
outputs by maintaining state information across time steps

Various Input-Output scenarios are possible
(Single/Multiple)

Vanilla RNNs are improved upon by LSTMs which address
the vanishing gradient problem through the CEC

Exploding gradients are handled by gradient clipping

More complex architectures are listed in the course
materials for you to read, understand, and present
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