
The Vanilla RNN Forward!

28"

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2 !

h3!

 x3 h2!
!

C3!

y3! ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

“Unfold” network through time by
making copies at each time-step!

BackPropagation Refresher!

f(x; W)!

x!

y!

C!

SGD Update

W ←W −η ∂C
∂W

∂C
∂W

= ∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟

y = f (x;W)
C = Loss(y, yGT)

Multiple Layers !

f1(x; W1)!

x!

y1!

C!

SGD Update

W2 ←W2 −η
∂C
∂W2

W1 ←W1 −η
∂C
∂W1

f2(y1; W2)!

y2!

y1 = f1(x;W1)
y2 = f2 (y1;W2)
C = Loss(y2 , yGT)

Chain Rule for Gradient Computation!

f1(x; W1)!

x!

y1!

C!

∂C
∂W1

= ∂C
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂y1
∂W1

⎛
⎝⎜

⎞
⎠⎟

f2(y1; W2)!

y2! Find ∂C
∂W1

, ∂C
∂W2

∂C
∂W2

= ∂C
∂y2

⎛
⎝⎜

⎞
⎠⎟

∂y2
∂W2

⎛
⎝⎜

⎞
⎠⎟

Application of the Chain Rule!

y1 = f1(x;W1)
y2 = f2 (y1;W2)
C = Loss(y2 , yGT)

= ∂C
∂y2

⎛
⎝⎜

⎞
⎠⎟

∂y2
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂y1
∂W1

⎛
⎝⎜

⎞
⎠⎟

Chain Rule for Gradient Computation!

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟ − How does output change due to params

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟ − How does output change due to inputs

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟ = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟

∂C
∂W

⎛
⎝⎜

⎞
⎠⎟ = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟

f(x; W)!

x!

y!
We are interested in computing:! ∂C

∂W
⎛
⎝⎜

⎞
⎠⎟ ,

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Intrinsic to the layer are:!

Given:! ∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

Chain Rule for Gradient Computation!

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟ − How does output change due to params

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟ − How does output change due to inputs

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟ = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂x

⎛
⎝⎜

⎞
⎠⎟

∂C
∂W

⎛
⎝⎜

⎞
⎠⎟ = ∂C

∂y
⎛
⎝⎜

⎞
⎠⎟

∂y
∂W

⎛
⎝⎜

⎞
⎠⎟

We are interested in computing:! ∂C
∂W

⎛
⎝⎜

⎞
⎠⎟ ,

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Intrinsic to the layer are:!

Given:! ∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

f(x; W)!

Equations for common layers: http://arunmallya.github.io/writeups/nn/backprop.html!

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Extension to Computational Graphs!

f(x; W)!
f1(y; W1)! f2(y; W2)!

f(x; W)!

x!

y!

x!

y! y!

y2!y1!

Extension to Computational Graphs!

f(x; W)!

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

f1(y; W1)!

∂C1
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂C1
∂y

⎛
⎝⎜

⎞
⎠⎟

f2(y; W2)!

∂C2

∂y2

⎛
⎝⎜

⎞
⎠⎟

∂C2

∂y
⎛
⎝⎜

⎞
⎠⎟

f(x; W)!

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Σ

Extension to Computational Graphs!

f(x; W)!

∂C
∂y

⎛
⎝⎜

⎞
⎠⎟

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

f1(y; W1)!

∂C1
∂y1

⎛
⎝⎜

⎞
⎠⎟

∂C1
∂y

⎛
⎝⎜

⎞
⎠⎟

f2(y; W2)!

∂C2

∂y2

⎛
⎝⎜

⎞
⎠⎟

∂C2

∂y
⎛
⎝⎜

⎞
⎠⎟

f(x; W)!

∂C
∂x

⎛
⎝⎜

⎞
⎠⎟

Gradient Accumulation!Σ

BackPropagation Through Time
(BPTT)!

•  One of the methods used to train RNNs!
•  The unfolded network (used during forward pass) is

treated as one big feed-forward network !
•  This unfolded network accepts the whole time series as

input!

•  The weight updates are computed for each copy in the
unfolded network, then summed (or averaged) and then
applied to the RNN weights!

The Unfolded Vanilla RNN !

38"

h1!

 x1 !
!

C1!

y1!

h2!

C2!

y2 !

h3!

C3!

y3!

h0!
!

h1!
!

h2!
!

 x2 !
!

 x3 !
!

•  Treat the unfolded network as one
big feed-forward network!!

•  This big network takes in entire
sequence as an input!

•  Compute gradients through the
usual backpropagation!

!
•  Update shared weights!

The Unfolded Vanilla RNN Forward!

39"

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2 !

h3!

 x3 h2!
!

C3!

y3!

40"

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2 !

h3!

 x3 h2!
!

C3!

y3!

The Unfolded Vanilla RNN Backward!

The Vanilla RNN Backward!

41"

h1!

 x1 h0!
!

C1!

y1!

h2!

 x2 h1!
!

C2!

y2 !

h3!

 x3 h2!
!

C3!

y3!

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

Issues with the Vanilla RNNs!
•  In the same way a product of k real numbers can shrink to

zero or explode to infinity, so can a product of matrices!

•  It is sufficient for , where is the largest singular
value of W, for the vanishing gradients problem to occur
and it is necessary for exploding gradients that ,
where for the tanh non-linearity and for the
sigmoid non-linearity 1!

•  Exploding gradients are often controlled with gradient
element-wise or norm clipping!

λ1 <1/γ λ1

λ1 >1/γ
γ = 1

1 On the difficulty of training recurrent neural networks, Pascanu et al., 2013!

γ = 1/ 4

The Identity Relationship !
•  Recall !

ht = ht−1 + F(xt)

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

•  Suppose that instead of a matrix multiplication, we had an
identity relationship between the hidden states!

•  The gradient does not decay as the error is propagated all
the way back aka “Constant Error Flow” !

⇒ ∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
= 1

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

The Identity Relationship !
•  Recall !

ht = ht−1 + F(xt)

∂Ct

∂h1
= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂h1

⎛
⎝⎜

⎞
⎠⎟

= ∂Ct

∂yt

⎛
⎝⎜

⎞
⎠⎟

∂yt
∂ht

⎛
⎝⎜

⎞
⎠⎟

∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
!

∂h2
∂h1

⎛
⎝⎜

⎞
⎠⎟

•  Suppose that instead of a matrix multiplication, we had an
identity relationship between the hidden states!

•  The gradient does not decay as the error is propagated all
the way back aka “Constant Error Flow” !

⇒ ∂ht
∂ht−1

⎛
⎝⎜

⎞
⎠⎟
= 1

ht = tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

yt = F(ht)
Ct = Loss(yt ,GTt)

Remember Resnets?!

Disclaimer !
•  The explanations in the previous few slides are handwavy!

•  For rigorous proofs and derivations, please refer to !
On the difficulty of training recurrent neural networks, Pascanu et al., 2013!
Long Short-Term Memory, Hochreiter et al., 1997!
And other sources!

!

Long Short-Term Memory (LSTM)1!

46"

•  The LSTM uses this idea of “Constant Error Flow” for
RNNs to create a “Constant Error Carousel” (CEC) which
ensures that gradients don’t decay!

•  The key component is a memory cell that acts like an
accumulator (contains the identity relationship) over time!

•  Instead of computing new state as a matrix product with
the old state, it rather computes the difference between
them. Expressivity is the same, but gradients are better
behaved!

!

1 Long Short-Term Memory, Hochreiter et al., 1997!
!

The LSTM Idea!

Cell!

ht!

47"

 xt!
!
!
ht-1!
!

ct = ct−1 + tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ct!

ht = tanhct

W!

* Dashed line indicates time-lag!
!

The Original LSTM Cell!

it! ot!
Input Gate! Output Gate!

Cell!

ht!

48"

xt ht-1!
 !

xt ht-1!
 !

ct = ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

ct!

ht = ot ⊗ tanhct it =σ Wi

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bi

⎛
⎝⎜

⎞
⎠⎟

Similarly for ot!

 xt!
!
!
ht-1!
!

W!

Wi! Wo!

The Popular LSTM Cell!

it! ot!

ft!

Input Gate! Output Gate!

Forget Gate!

ht!

49"

xt ht-1!
 !

Cell!

ct!

ct = ft ⊗ ct−1 + it ⊗ tanhW
xt
ht−1

⎛
⎝⎜

⎞
⎠⎟

xt ht-1!
 !

xt ht-1!
 !

 xt!
!
!
ht-1!
!

W!

Wi! Wo!

Wf!

ft =σ Wf

xt
ht−1

⎛
⎝⎜

⎞
⎠⎟
+ bf

⎛
⎝⎜

⎞
⎠⎟

Summary!

51"

•  RNNs allow for processing of variable length inputs and
outputs by maintaining state information across time steps!

•  Various Input-Output scenarios are possible !
(Single/Multiple)!

•  Vanilla RNNs are improved upon by LSTMs which address
the vanishing gradient problem through the CEC!

•  Exploding gradients are handled by gradient clipping!

•  More complex architectures are listed in the course
materials for you to read, understand, and present !

!

Other Useful Resources / References!

52"

•  http://cs231n.stanford.edu/slides/winter1516_lecture10.pdf !
•  http://www.cs.toronto.edu/~rgrosse/csc321/lec10.pdf !

•  R. Pascanu, T. Mikolov, and Y. Bengio,
On the difficulty of training recurrent neural networks, ICML 2013 !

•  S. Hochreiter, and J. Schmidhuber, Long short-term memory, Neural computation,
1997 9(8), pp.1735-1780!

•  F.A. Gers, and J. Schmidhuber, Recurrent nets that time and count, IJCNN 2000 !
•  K. Greff , R.K. Srivastava, J. Koutník, B.R. Steunebrink, and J. Schmidhuber,

LSTM: A search space odyssey, IEEE transactions on neural networks and learning
systems, 2016 !

•  K. Cho, B. Van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio,
Learning phrase representations using RNN encoder-decoder for statistical machine
translation, ACL 2014!

•  R. Jozefowicz, W. Zaremba, and I. Sutskever,
An empirical exploration of recurrent network architectures, JMLR 2015 !

