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The Vanilla RNN Backward
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The Popular LSTM Cell
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LSTM – Forward/Backward
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Go	To:	http://arunmallya.github.io/writeups/nn/lstm/index.html#/



Multi-layer RNNs
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• We can of course design RNNs with multiple hidden layers

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

• Think exotic: Skip connections across layers, across time, …



Bi-directional RNNs
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• RNNs can process the input sequence in forward and in the 
reverse direction

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5 y6

• Popular in speech recognition



Recap
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• RNNs allow for processing of variable length inputs and 
outputs by maintaining state information across time steps

• Various Input-Output scenarios are possible 
(Single/Multiple)

• RNNs can be stacked, or bi-directional

• Vanilla RNNs are improved upon by LSTMs which address 
the vanishing gradient problem through the CEC

• Exploding gradients are handled by gradient clipping



The Popular LSTM Cell
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Extension I: Peephole LSTM
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Peephole LSTM

• Gates can only see the output from the previous time step, 
which is close to 0 if the output gate is closed. However, these 
gates control the CEC cell. 

• Helped the LSTM learn better timing for the problems tested –
Spike timing and Counting spike time delays

Recurrent nets that time and count, Gers et al., 2000



Other minor variants

• Coupled Input and Forget Gate
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LSTM: A Search Space Odyssey

• Tested the following variants, using Peephole LSTM as 
standard:

1. No Input Gate (NIG) 
2. No Forget Gate (NFG) 
3. No Output Gate (NOG) 
4. No Input Activation Function (NIAF) 
5. No Output Activation Function (NOAF) 
6. No Peepholes (NP) 
7. Coupled Input and Forget Gate (CIFG) 
8. Full Gate Recurrence (FGR)

• On the tasks of:
– Timit Speech Recognition: Audio frame to 1 of 61 phonemes
– IAM Online Handwriting Recognition: Sketch to characters
– JSB Chorales: Next-step music frame prediction

LSTM: A Search Space Odyssey, Greff et al., 2015



LSTM: A Search Space Odyssey

• The standard LSTM performed reasonably well on multiple 
datasets and none of the modifications significantly improved 
the performance

• Coupling gates and removing peephole connections simplified 
the LSTM without hurting performance much

• The forget gate and output activation are crucial

• Found interaction between learning rate and network size to be 
minimal – indicates calibration can be done using a small 
network first

LSTM: A Search Space Odyssey, Greff et al., 2015



Gated Recurrent Unit (GRU)

• A very simplified version of the LSTM
– Merges forget and input gate into a single ‘update’ gate
– Merges cell and hidden state

• Has fewer parameters than an LSTM and has been shown to 
outperform LSTM on some tasks

Learning Phrase Representations using RNN Encoder-Decoder for 
Statistical Machine Translation, Cho et al., 2014
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GRU
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GRU
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An Empirical Exploration of Recurrent 
Network Architectures

• Given the rather ad-hoc design of the LSTM, the authors try to 
determine if the architecture of the LSTM is optimal

• They use an evolutionary search for better architectures

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015



Evolutionary Architecture Search

• A list of top-100 architectures so far is maintained, initialized 
with the LSTM and the GRU

• The GRU is considered as the baseline to beat
• New architectures are proposed, and retained based on 

performance ratio with GRU

• All architectures are evaluated on 3 problems
– Arithmetic: Compute digits of sum or difference of two numbers 

provided as inputs. Inputs have distractors to increase difficulty
3e36d9-h1h39f94eeh43keg3c = 3369 – 13994433 = -13991064

– XML Modeling: Predict next character in valid XML modeling
– Penn Tree-Bank Language Modeling: Predict distributions over words 

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015



Evolutionary Architecture Search

• At each step
– Select 1 architecture at random, evaluate on 20 randomly chosen 

hyperparameter settings. 
– Alternatively, propose a new architecture by mutating an existing one. 

Choose probability p from [0,1] uniformly and apply a transformation 
to each node with probability p
• If node is a non-linearity, replace with {tanh(x), sigmoid(x), ReLU(x), Linear(0, x), 

Linear(1, x), Linear(0.9, x), Linear(1.1, x)}
• If node is an elementwise op, replace with {multiplication, addition, subtraction}
• Insert random activation function between node and one of its parents
• Replace node with one of its ancestors (remove node)
• Randomly select a node (node A). Replace the current node with either the sum, 

product, or difference of a random ancestor of the current node and a random 
ancestor of A.

– Add architecture to list based on minimum relative accuracy wrt GRU 
on 3 different tasks

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015



Evolutionary Architecture Search

• 3 novel architectures are presented in the paper
• Very similar to GRU, but slightly outperform it

• LSTM initialized with a large positive forget gate bias 
outperformed both the basic LSTM and the GRU!

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015



LSTM initialized with large positive forget 
gate bias?

• Recall

An Empirical Exploration of Recurrent Network Architectures, Jozefowicz et al., 2015
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• Gradients will vanish if f is close to 0. Using a large positive bias ensures 

that f has values close to 1, especially when training begins
• Helps learn long-range dependencies
• Originally stated in Learning to forget: Continual prediction with LSTM, 

Gers et al., 2000, but forgotten over time



Summary
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• LSTMs can be modified with Peephole Connections, Full Gate 
Recurrence, etc. based on the specific task at hand

• Architectures like the GRU have fewer parameters than the 
LSTM and might perform better

• An LSTM with large positive forget gate bias works best!
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