
Kinds	of	task	environments

6	common	properties	to	distinguish	tasks	(not	exhaustive)
• Fully	observable	vs	Partially	observable
• Single	agent	vs	Multiagent
• Deterministic vs	Stochastic
• Episodic vs	Sequential
• Static vs	Dynamic
• Discrete vs	Continuous

Col	1	– Poker
Col	2	– Self-driving	taxi
Col	3	– Spam	classifier
Col	4	– Pacman	with	ghosts
Col	5	– Oil	refinery	control	system
Col	6	– Automatic	speech	transcription



Search	Problems



Search?



Information	Retrieval	vs	Search

Query
(Start) Result

Result

Result

Start Result

Search
(Problem-Solving)

(Information	Retrieval)

Best!

Best!



Definition	of	Search

Finding	a	(best)	sequence	of	actions	
to	solve	a	problem

For	now,	assume	the	problem	is
• Deterministic
• Fully	observable
• Known



Search	Problem	Mechanics

• A	search problem consists	of:

• A	state	space

• A	successor	function
(with	actions,	costs)

• A	start	state	and	a	goal	test

• A	solution is	a	sequence	of	actions	(a	plan)	which	
transforms	the	start	state	to	a	goal	state

“N”,	1.0

“E”,	1.0



Example:	Traveling	in	Romania

• State	space:
• Cities

• Successor	function:
• Roads:	Go	to	adjacent	city	with	
cost	=	distance

• Start	state:
• Arad

• Goal	test:
• Is	state	==	Bucharest?

• Solution?



What’s	in	a	State	Space?

• Problem:	Pathing
• States:	(x,y)	location
• Actions:	NSEW
• Successor:	update	location	
only

• Goal	test:	is	(x,y)=END

• Problem:	Eat-All-Dots
• States:	{(x,y),	dot	booleans}
• Actions:	NSEW
• Successor:	update	location	
and	possibly	a	dot	boolean

• Goal	test:	dots	all	false

The	world	state includes	every	last	detail	of	the	environment

A	search	state keeps	only	the	details	needed	for	planning	(abstraction)



State	Space	Sizes?

• World	state:
• Agent	positions:	120
• Food	count:	30
• Ghost	positions:	12
• Agent	facing:	NSEW

• How	many
• World	states?
120x(230)x(122)x4

• States	for	pathing?
120

• States	for	eat-all-dots?
120x(230)



Search	Problem	Mechanics

• A	search problem consists	of:

• A	state	space

• A	successor	function
(with	actions,	costs)

• A	start	state	and	a	goal	test

• A	solution is	a	sequence	of	actions	(a	plan)	which	
transforms	the	start	state	to	a	goal	state

“N”,	1.0

“E”,	1.0

What	are	some	
problems	that	can’t	
be	formulated	as	

search?



State	Space	Graphs	and	Search	Trees



State	Space	Graphs

• State	space	graph:	A	mathematical	
representation	of	a	search	problem
• Nodes	are	(abstracted)	world	configurations
• Arcs	represent	successors	(action	results)
• The	goal	test	is	a	set	of	goal	nodes	(maybe	only	one)

• In	a	state	space	graph,	each	state	occurs	only	
once!

• We	can	rarely	build	this	full	graph	in	memory	
(it’s	too	big),	but	it’s	a	useful	idea



State	Space	Graphs

• State	space	graph:	A	mathematical	
representation	of	a	search	problem
• Nodes	are	(abstracted)	world	configurations
• Arcs	represent	successors	(action	results)
• The	goal	test	is	a	set	of	goal	nodes	(maybe	only	one)

• In	a	state	space	graph,	each	state	occurs	only	
once!

• We	can	rarely	build	this	full	graph	in	memory	
(it’s	too	big),	but	it’s	a	useful	idea

S

G

d

b

p q

c

e

h

a

f

r

Tiny	search	graph	for	a	tiny	
search	problem



Search	Trees

• A	search	tree:
• A	“what	if”	tree	of	plans	and	their	outcomes
• The	start	state	is	the	root	node
• Children	correspond	to	successors
• Nodes	show	states,	but	correspond	to	ACTION	SEQUENCES	that	achieve	those	states
• For	most	problems,	we	can	never	actually	build	the	whole	tree

“E”,	1.0“N”,	1.0

This	is	now	/	start

Possible	futures



State	Space	Graphs	vs.	Search	Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We	construct	both	
on	demand	– and	
we	construct	as	
little	as	possible.

Each	NODE	in	in	
the	search	tree	

corresponds	to	an	
entire	PATH	in	the	
state	space	graph.

Search	TreeState	Space	Graph



Quiz:	State	Space	Graphs	vs.	Search	Trees

S G

b

a

Consider	this	4-state	graph:	

Important:	Lots	of	repeated	structure	in	the	search	tree!

How	big	is	its	search	tree	(from	S)?



Tree	Search



Search	Example:	Romania



Searching	with	a	Search	Tree

• Search:
• Expand	out	potential	plans	(tree	nodes)
• Maintain	a	fringe	of	partial	plans	under	consideration
• Try	to	expand	as	few	tree	nodes	as	possible



General	Tree	Search



Search	Algorithm	Properties

• Complete:	Guaranteed	to	find	a	solution	if	one	exists?
• Optimal:	Guaranteed	to	find	the	least	cost	path?
• Time	complexity?
• Space	complexity?

• Cartoon	of	search	tree:
• b	is	the	branching	factor
• m	is	the	maximum	depth
• solutions	at	various	depths

• Number	of	nodes	in	entire	tree?
• 1	+	b	+	b2 +	….	bm =	O(bm)

…
b

1	node
b	nodes

b2 nodes

bm nodes

m	tiers



Breadth-First	Search



Breadth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy:	expand	a	
shallowest	node	first

Implementation:	Fringe	
is	a	FIFO	queue



Breadth-First	Search	(BFS)	Properties

• What	nodes	does	BFS	expand?
• Processes	all	nodes	above	shallowest	solution
• Let	depth	of	shallowest	solution	be	s
• Search	takes	time	O(bs)

• How	much	space	does	the	fringe	take?
• Has	roughly	the	last	tier,	so	O(bs)

• Is	it	complete?
• s	must	be	finite	if	a	solution	exists,	so	yes!

• Is	it	optimal?
• Only	if	costs	are	all	1	(more	on	costs	later)

…
b

1	node
b	nodes

b2 nodes

bm nodes

s	tiers

bs nodes



Python code for BFS



Next	time

Other search	strategies


