Kinds of task environments

6 common properties to distinguish tasks (not exhaustive)

Fully observable vs Partially observable

Single agent vs Multiagent
Deterministic vs Stochastic
Episodic vs Sequential
Static vs Dynamic

Discrete vs Continuous

Col 1 — Poker

Col 2 — Self-driving taxi

Col 3 — Spam classifier

Col 4 — Pacman with ghosts

Col 5 — Qil refinery control system

Col 6 — Automatic speech transcription

Search Problems

Search?

-(.

Information Retrieval vs Search

Go gle Search

(Problem-Solving)
(Information Retrieval)

Result Best!

Result

Definition of Search

Finding a (best) sequence of actions
to solve a problem

For now, assume the problem is

e Deterministic
* Fully observable
* Known

Search Problem Mechanics

* A search problem consists of:

wsoesce 1 I K

* A successor function “N”, 1.0 u
(with actions, costs) ! _—

B
IIE”’ 10

* A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

A start state and a goal test

[Oradea

Example: Traveling in Romania

State space:
* Cities

Successor function:

* Roads: Go to adjacent city with
cost = distance

Start state:
e Arad

FHirsova

Goal test:
e |s state == Bucharest?

Eforie

Solution?

What’s in a State Space?

/ The world state includes every last detail of the environment

_
/ A search state keeps only the details needed for planning (abstraction)
* Problem: Pathing * Problem: Eat-All-Dots
« States: (x,y) location « States: {(x,y), dot booleans}
* Actions: NSEW * Actions: NSEW
e Successor: update location e Successor: update location
only and possibly a dot boolean
* Goal test: is (x,y)=END * Goal test: dots all false

"

State Space Sizes?

 World state:
* Agent positions: 120
 Food count: 30

* Ghost positions: 12
* Agent facing: NSEW

* How many
* World states?
120x(23%)x(12%)x4
» States for pathing?
120
» States for eat-all-dots?
120x(239)

Search Problem Mechanics

e A search problem consists of:

w1 I O

e A successor function What are some

(with actions, costs) “N’, 1.0 u problems that can’t
A start state and | test be formulated as
* Start state and a goal tes
E}‘ search?

e A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

State Space Graphs and Search Trees

State Space Graphs

 State space graph: A mathematical
representation of a search problem
* Nodes are (abstracted) world configurations
* Arcs represent successors (action results)
* The goal test is a set of goal nodes (maybe only one)

* |n a state space graph, each state occurs only
once!

* We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

 State space graph: A mathematical
representation of a search problem
* Nodes are (abstracted) world configurations
* Arcs represent successors (action results)
* The goal test is a set of goal nodes (maybe only one)

* |n a state space graph, each state occurs only
once!

* We can rarely build this full graph in memory Tiny search graph for a tiny
(it’s too big), but it’s a useful idea search problem

Search Trees

! This is now / start

”N’}]..O/ wO

u ! Possible futures

e A search tree:

* A “whatif” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to ACTION SEQUENCES that achieve those states
For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree
corresponds to an
entire PATH in the

state space graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

-
e p

T — — '
b e h r q
I — N I
a h r p q f

AN 1 . —

p aq f q C

' —_~ .

q c G a

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph: How big is its search tree (from S)?

X0

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Hirsova

86

Eforie

Searching with a Search Tree

Arad

G > > Oaien> @adisd

* Search:
* Expand out potential plans (tree nodes)
* Maintain a fringe of partial plans under consideration
* Try to expand as few tree nodes as possible

General Tree Search

function TREB-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

Search Algorithm Properties

Complete: Guaranteed to find a solution if one exists?

Optimal: Guaranteed to find the least cost path?

Time complexity?

Space complexity?

Cartoon of search tree:

* bisthe branching factor
* mis the maximum depth
 solutions at various depths

Number of nodes in entire tree?
e 1+b+b?+...bMm=0(b™)

m tiers <

[

1 node

b nodes

b2 nodes

b™ nodes

Breadth-First Search

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

* Processes all nodes above shallowest solution
* Let depth of shallowest solution be s
e Search takes time O(b®)

How much space does the fringe take?
* Has roughly the last tier, so O(b®)

Is it complete?
* s must be finite if a solution exists, so yes!

s it optimal?
e Only if costs are all 1 (more on costs later)

s tiers

<

1 node

b nodes

b2 nodes

bs nodes

b™ nodes

Python code for BFS

import collections

def bfs(graph, root):
seen, queue = set([root]), collections.deque([root])
while queue:
vertex = queue.popleft()
visit(vertex)
for node in graphl[vertex]:
if node not in seen:
seen.add(node)
queue.append(node)

def visit(n):
print(n)

if _name__ == '__main__"':
graph = {0: [1, 21, 1: [2, @1, 2: [1}
bfs(graph, 0)

Next time

Other search strategies

