
Homework 0 is due today



Search	Problem	Mechanics

• A	search problem consists	of:

• A	state	space

• A	successor	function
(with	actions,	costs)

• A	start	state	and	a	goal	test

• A	solution is	a	sequence	of	actions	(a	plan)	which	
transforms	the	start	state	to	a	goal	state

“N”,	1.0

“E”,	1.0



State	Space	Graphs	vs.	Search	Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We	construct	both	
on	demand	– and	
we	construct	as	
little	as	possible.

Each	NODE	in	in	
the	search	tree	

corresponds	to	an	
entire	PATH	in	the	
state	space	graph.

Search	TreeState	Space	Graph



Breadth-First	Search	(BFS)	Properties

• What	nodes	does	BFS	expand?
• Processes	all	nodes	above	shallowest	solution
• Let	depth	of	shallowest	solution	be	s
• Search	takes	time	O(bs)

• How	much	space	does	the	fringe	take?
• Has	roughly	the	last	tier,	so	O(bs)

• Is	it	complete?
• s	must	be	finite	if	a	solution	exists,	so	yes!

• Is	it	optimal?
• Only	if	costs	are	all	1	(more	on	costs	later)

…
b

1	node
b	nodes

b2 nodes

bm nodes

s	tiers

bs nodes



Python code for BFS



Depth-First	Search



Depth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy:	expand	a	
deepest	node	first

Implementation:	
Fringe	is	a	LIFO	stack



Depth-First	Search	(DFS)	Properties

…
b

1	node
b	nodes

b2 nodes

bm nodes

m	tiers

• What	nodes	DFS	expand?
• Some	left	prefix	of	the	tree.
• Could	process	the	whole	tree!
• If	m	is	finite,	takes	time	O(bm)

• How	much	space	does	the	fringe	take?
• Only	has	siblings	on	path	to	root,	so	O(bm)

• Is	it	complete?
• m	could	be	infinite,	so	only	if	we	prevent	
cycles	(more	later)

• Is	it	optimal?
• No,	it	finds	the	“leftmost”	solution,	
regardless	of	depth	or	cost



Python code for DFS



DFS	vs	BFS



Iterative	Deepening

…
b

• Idea:	get	DFS’s	space	advantage	with	BFS’s	
time	/	shallow-solution	advantages
• Run	a	DFS	with	depth	limit	1.		If	no	solution…
• Run	a	DFS	with	depth	limit	2.		If	no	solution…
• Run	a	DFS	with	depth	limit	3.		…..

• Isn’t	that	wastefully	redundant?
• Generally	most	work	happens	in	the	lowest	level	
searched,	so	not	so	bad!



Python Code for Iterative	Deepening



Cost-Sensitive	Search

BFS	finds	the	shortest	path	in	terms	of	number	of	actions.
It	does	not	find	the	least-cost	path.		We	will	now	cover
a	similar	algorithm	which	does	find	the	least-cost	path.		

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2



Uniform	Cost	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy:	expand	a	cheapest	
node	first:

Fringe	is	a	priority	queue	
(priority:	cumulative	cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2



…

Uniform	Cost	Search	(UCS)	Properties

• What	nodes	does	UCS	expand?
• Processes	all	nodes	with	cost	less	than	cheapest	solution!
• If	that	solution	costs	C* and	arcs	cost	at	least	e , then	the	
“effective	depth”	is	roughly	C*/e

• Takes	time	O(bC*/e)	(exponential	in	effective	depth)

• How	much	space	does	the	fringe	take?
• Has	roughly	the	last	tier,	so	O(bC*/e)

• Is	it	complete?
• Assuming	best	solution	has	a	finite	cost	and	minimum	arc	cost	
is	positive,	yes!

• Is	it	optimal?
• Yes!	(skipping	the	proof	for	now)

b

C*/e “tiers”
c	£ 3

c	£ 2

c	£ 1



Uniform	Cost	Issues

• Remember:	UCS	explores	increasing	cost	
contours

• The	good:	UCS	is	complete	and	optimal!

• The	bad:
• Explores	options	in	every	“direction”
• No	information	about	goal	location

• We’ll	fix	that	soon!

Start Goal

…

c	£ 3
c	£ 2

c	£ 1



Next	time

Informed	search	methods


