Homework O is due today

A\

—

=| stackoverflow

Search

python how to sort dictionary by value

2477 38 Q: Sort a Python dictionary by value

votes answers , but how can | sort based on the values? Note: | have read Stack Overflow question How do | sort a list of

dictionaries by values of the dictionary in Python? and probably could change my code to have ... | have a
dictionary of values read from two fields in a database: a string field and a numeric field. The string field is
unique, so that is the key of the dictionary. | can sort on the keys ...

python sorting dictionary asked Mar 5 '09 by Gern Blanston

12 2 Q: How to sort a Python dictionary by value?

-4 3 Q: Python how to sort a dictionary by value in reverse orde

Search Problem Mechanics

* A search problem consists of:

wsoesce 1 I K

* A successor function “N”, 1.0 u
(with actions, costs) ! _—

B
IIE”’ 10

* A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

A start state and a goal test

State Space Graphs vs. Search Trees

/State Space Graph\

Each NODE in in
the search tree
corresponds to an
entire PATH in the

state space graph.

We construct both
on demand — and
we construct as
little as possible.

-

Search Tree

-
e p

T — — '
b e h r q
I — N I
a h r p q f

AN 1 . —

p aq f q C

' —_~ .

q c G a

Breadth-First Search (BFS) Properties

What nodes does BFS expand?

* Processes all nodes above shallowest solution
* Let depth of shallowest solution be s
e Search takes time O(b®)

How much space does the fringe take?
* Has roughly the last tier, so O(b®)

Is it complete?
* s must be finite if a solution exists, so yes!

s it optimal?
e Only if costs are all 1 (more on costs later)

s tiers

<

1 node

b nodes

b2 nodes

bs nodes

b™ nodes

Python code for BFS

import collections

def bfs(graph, root):
seen, queue = set([root]), collections.deque([root])
while queue:
vertex = queue.popleft()
visit(vertex)
for node in graphl[vertex]:
if node not in seen:
seen.add(node)
queue.append(node)

def visit(n):
print(n)

if _name__ == '__main__"':
graph = {0: [1, 21, 1: [2, @1, 2: [1}
bfs(graph, 0)

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Depth-First Search (DFS) Properties

What nodes DFS expand?

* Some left prefix of the tree.
* Could process the whole tree!
* If mis finite, takes time O(b™)

How much space does the fringe take?
* Only has siblings on path to root, so O(bm)

Is it complete?

* m could be infinite, so only if we prevent
cycles (more later)

s it optimal?
* No, it finds the “leftmost” solution,
regardless of depth or cost

m tiers <<

1 node

b nodes

b2 nodes

b™ nodes

Python code for DFS

def dfs_recursive(graph, vertex, path=[]):
path += [vertex]

for neighbor in graphl[vertex]:
if neighbor not in path:
path = dfs_recursive(graph, neighbor, path)

return path

adjacency_matrix = {1: [2, 3], 2: [4, 5],
3: [5], 4: [6], 5: [6],
6: [71, 7: [1}

print(dfs_recursive(adjacency_matrix, 1))
[1, 2, 4, 6, 7, 5, 3]

DES vs BFS

If you know a solution is not far from the root of the tree, a breadth first search (BFS) might be
better.

If the tree is very deep and solutions are rare, depth first search (DFS) might take an extremely
long time, but BFS could be faster.

If the tree is very wide, a BFS might need too much memory, so it might be completely
impractical.

If solutions are frequent but located deep in the tree, BFS could be impractical.

If the search tree is very deep you will need to restrict the search depth for depth first search
(DFS), anyway (for example with iterative deepening).

Iterative Deepening

* |[dea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages
* Run a DFS with depth limit 1. If no solution...
* Run a DFS with depth limit 2. If no solution...
* Run a DFS with depth limit 3.

* Isn’t that wastefully redundant?

* Generally most work happens in the lowest level
searched, so not so bad!

Python Code for Iterative Deepening

A function to perform a Depth-Limited search
from given source 'src'

def DLS(src,target,maxDepth):
if src == target : return True

If reached the maximum depth, stop recursing.
if maxDepth <= 0 : return False

Recur for all the vertices adjacent to this vertex
for i in graph[src]:
if(DLS(i,target,maxDepth-1)):
return True
return False

IDDFS to search if target is reachable from v.
It uses recursive DLS()
def IDDFS(src,target, maxDepth):

Repeatedly depth-limit search till the
maximum depth
for i in range(maxDepth):
if (DLS(src, target, i)):
return True
return False

Cost-Sensitive Search

3

2

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost <
contours

Uniform Cost Search (UCS) Properties

What nodes does UCS expand?

* Processes all nodes with cost less than cheapest solution! ~

* |f that solution costs C* and arcs cost at least £, then the
“effective depth” is roughly C*/¢

* Takes time O(b¢™%) (exponential in effective depth) C¥e “tiers” <

How much space does the fringe take?
* Has roughly the last tier, so O(bc™%)

Is it complete?

* Assuming best solution has a finite cost and minimum arc cost @
is positive, yes!

s it optimal?
* Yes! (skipping the proof for now)

Uniform Cost Issues

e Remember: UCS explores increasing cost
contours

* The good: UCS is complete and optimal!

* The bad:

* Explores options in every “direction”
* No information about goal location

e We'll fix that soon!

Next time

Informed search methods

