Announcements

Review DFS, BFS and UCS and Introduce heuristic today.

Project 1 out, due next Friday.



Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers




Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack




Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost <
contours




BFS/DFS/UCS

* Breadth-first search
* Good: optimal, works well when many options, but not many actions required
* Bad: assumes all actions have equal cost

* Depth-first search

* Good: memory-efficient, works well when few options, but lots of actions
required

* Bad: not optimal, can run infinitely, assumes all actions have equal cost

* Uniform-cost search
* Good: optimal, handles variable-cost actions

+ Bad: explores all options, no information about goal location | Basically Dijkstra's

Algorithm!



Dijkstra‘s algorithm (Uniform-cost search)

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost <
contours




Search example: Pancake Problem

Rule: a spatula can be inserted at any interval and flip all pancakes above it.
Cost: Number of pancakes flipped.



Pancake BFS

Draw it by yourself!



Pancake UCS

Draw it by yourself!



Pancake DFS

State space graph with costs as weights

Cost: 16
# Steps: 6




Pancake Optimal

State space graph with costs as weights

Cost: 7
# Steps: 2



Incorporating goal information

How to efficiently solve search problems with
variable-cost actions, using information
about the goal state?

» Heuristics
» Greedy approach
» A* search



Search Heuristics

A function that estimates how close a state is to a goal /\\\
NOPE=S T\ GoaLt

Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

Heuriski —Tron J
Note that the heuristic is a property

of the state, not the action taken to |
get to the state! / /;1\\\
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Pancake Heuristics

Heuristic 1: the number of pancakes that are out of place

Start 3

h(x)




Pancake Heuristics

Heuristic 2: how many pancakes are on top of a smaller pancake?

Start 2

h(x)




Pancake Heuristics

Heuristic 3: All zeros (aka null heuristic, or "l like waffles better anyway”)

Start 0

h(x)
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Straight-line Heuristic in Romania
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Greedy Search




Greedy Straight-Line Search in Romania

* Expand the node that seems closest...

Greedy
o Cost: 450

Optimal
o Cost: 418
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Greedy Search

 Strategy: expand a node that you think is
closest to a goal state

* Heuristic: estimate of distance to nearest goal for
each state

* A common case:;

. Bes’lc-first takes you straight to the (non-optimal)
g0a

e Worst-case: like a badly-guided DFS

* What goes wrong?
* Doesn’t take real path cost into account




Next class

A¥* search



