
Announcements

Project 1 out, due next Friday.

Review DFS, BFS and UCS	and Introduce heuristic today.

Breadth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy:	expand	a	
shallowest	node	first

Implementation:	Fringe	
is	a	FIFO	queue

Depth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b
a

c

e

r

Strategy:	expand	a	
deepest	node	first

Implementation:	
Fringe	is	a	LIFO	stack

Uniform	Cost	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy:	expand	a	cheapest	
node	first:

Fringe	is	a	priority	queue	
(priority:	cumulative	cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2

BFS/DFS/UCS

• Breadth-first	search
• Good:	optimal,	works	well	when	many	options,	but	not	many	actions	required
• Bad:	assumes	all	actions	have	equal	cost

• Depth-first	search
• Good:	memory-efficient,	works	well	when	few	options,	but	lots	of	actions	
required
• Bad:	not	optimal,	can	run	infinitely,	assumes	all	actions	have	equal	cost

• Uniform-cost	search
• Good:	optimal,	handles	variable-cost	actions
• Bad:	explores	all	options,	no	information	about	goal	location Basically	Dijkstra’s	

Algorithm!	

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy:	expand	a	cheapest	
node	first:

Fringe	is	a	priority	queue	
(priority:	cumulative	cost) S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost	
contours

2

Dijkstra‘s	algorithm (Uniform-cost search)

Search	example:	Pancake	Problem

Rule: a spatula can	be	inserted	at	any	interval and	flip	all	pancakes	above	it.
Cost:	Number	of	pancakes flipped.

Pancake	BFS

Draw it by yourself!

Pancake	UCS

Draw it by yourself!

Pancake	DFS

3

2

4

3

3

2

2

2

4

State	space	graph	with	costs	as	weights

3
4

3

4

2

Start

Goal

3
Cost:	16
#	Steps:	6

Pancake	Optimal

3

2

4

3

3

2

2

2

4

State	space	graph	with	costs	as	weights

3
4

3

4

2

Start

Goal

3
Cost:	7
#	Steps:	2

Incorporating	goal	information

How	to	efficiently solve	search	problems	with	
variable-cost	actions,	using	information	

about	the	goal	state?

Ø Heuristics
Ø Greedy	approach
Ø A*	search

Search	Heuristics

§ A	heuristic	is:
§ A	function	that	estimates how	close	a	state	is	to	a	goal
§ Designed	for	a	particular	search	problem
§ Examples:	Manhattan	distance,	Euclidean	distance	for	

pathing

10

5

11.2

Note that	the	heuristic	is	a	property	
of	the	state,	not	the	action	taken	to	
get	to	the	state!

Pancake	Heuristics

Heuristic	1:	the	number	of	pancakes that	are out	of	place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)
Start

Goal

Pancake	Heuristics

Heuristic	2:	how	many	pancakes	are	on	top	of	a	smaller	pancake?

1
2

0

1

1

1

1

2

2

1

1

2

1

h(x)
Start

Goal

Pancake	Heuristics

Heuristic	3:	All	zeros	(aka	null	heuristic,	or	”I	like	waffles	better	anyway”)

0
0

0

0

0

0

0

0

0

0

0

0

0

h(x)
Start

Goal

Straight-line	Heuristic	in	Romania

h(x)

Greedy	Search

Greedy	Straight-Line	Search	in	Romania

h(x)

Greedy
o Cost:	450

Optimal
o Cost:	418

• Expand	the	node	that	seems	closest…

Greedy	Search

• Strategy:	expand	a	node	that	you	think	is	
closest	to	a	goal	state
• Heuristic:	estimate	of	distance	to	nearest	goal	for	
each	state

• A	common	case:
• Best-first	takes	you	straight	to	the	(non-optimal)	
goal

• Worst-case:	like	a	badly-guided	DFS

• What	goes	wrong?
• Doesn’t	take	real path	cost	into	account

…
b

…
b

Next class

A*	search

