Announcements

Review DFS, BFS and UCS and Introduce heuristic today.

Project 1 out, due next Friday.

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search

Search

Tiers

Depth-First Search

Strategy: expand a
deepest node first

Implementation:
Fringe is a LIFO stack

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Uniform Cost Search

Cost <
contours

BFS/DFS/UCS

* Breadth-first search
* Good: optimal, works well when many options, but not many actions required
* Bad: assumes all actions have equal cost

* Depth-first search

* Good: memory-efficient, works well when few options, but lots of actions
required

* Bad: not optimal, can run infinitely, assumes all actions have equal cost

* Uniform-cost search
* Good: optimal, handles variable-cost actions

+ Bad: explores all options, no information about goal location | Basically Dijkstra's

Algorithm!

Dijkstra‘s algorithm (Uniform-cost search)

Strategy: expand a cheapest
node first:

Fringe is a priority queue
(priority: cumulative cost)

Cost <
contours

Search example: Pancake Problem

Rule: a spatula can be inserted at any interval and flip all pancakes above it.
Cost: Number of pancakes flipped.

Pancake BFS

Draw it by yourself!

Pancake UCS

Draw it by yourself!

Pancake DFS

State space graph with costs as weights

Cost: 16
Steps: 6

Pancake Optimal

State space graph with costs as weights

Cost: 7
Steps: 2

Incorporating goal information

How to efficiently solve search problems with
variable-cost actions, using information
about the goal state?

» Heuristics
» Greedy approach
» A* search

Search Heuristics

A function that estimates how close a state is to a goal /\\\
NOPE=S T\ GoaLt

Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing

Heuriski —Tron J
Note that the heuristic is a property

of the state, not the action taken to |
get to the state! / /;1\\\
NoPE. GoAL'.

< -—-f '
l >

Heuristi — Tron J

Pancake Heuristics

Heuristic 1: the number of pancakes that are out of place

Start 3

h(x)

Pancake Heuristics

Heuristic 2: how many pancakes are on top of a smaller pancake?

Start 2

h(x)

Pancake Heuristics

Heuristic 3: All zeros (aka null heuristic, or "l like waffles better anyway”)

Start 0

h(x)

75

Arad [

Straight-line Heuristic in Romania

[] Vaslui

Timisoara

142

11 Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

= Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬂtra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
850
199
374

J

h(x)

Greedy Search

Greedy Straight-Line Search in Romania

* Expand the node that seems closest...

Greedy
o Cost: 450

Optimal
o Cost: 418

92

B
.__'_l
e N

o1l
Rimnicu
._h..

[] Vaslui

Timisoara

11

] Lugoj

] Mehadia
75

Dobreta [J

85 O
S

|
90

[] Giurgiu

=l Craiova

ﬂtraight—line distance \

to Bucharest

Arad 366
Bucharest 0
Craiova 160
Dobreta 242
Eforie 161
Fagaras 178
Giurgiu 77
Hirsova 151
Iasi 226
Lugoj 244
Mehadia 241
Neamt 234
Oradea 380
Pitesti 98
Rimnicu Vilcea 193
Sibiu 253
Timisoara 329
Urziceni 80
Vaslui 199
Zerind 374

J

h(x)

Greedy Search

 Strategy: expand a node that you think is
closest to a goal state

* Heuristic: estimate of distance to nearest goal for
each state

* A common case:;

. Bes’lc-first takes you straight to the (non-optimal)
g0a

e Worst-case: like a badly-guided DFS

* What goes wrong?
* Doesn’t take real path cost into account

Next class

A¥* search

