Announcements

® This Friday

= Project 1 due

= Talk by Jeniya Tabassum

TweeTIME: A Minimally Supervised Method for
Recognizing and Normalizing Time Expressions in Twitter

Recap: Search

= Search problem:
= States (configurations of the world)
= Actions and costs
= Successor function (world dynamics)
= Start state and goal test

= Search tree:
= Nodes: represent plans for reaching states
= Plans have costs (sum of action costs)

= Search algorithm:
= Systematically builds a search tree
= Chooses an ordering of the fringe (unexplored nodes)
= Optimal: finds least-cost plans

Uniform Cost Search

= Strategy: expand lowest path cost
" The good: UCS is complete and optimall!

= The bad:
= Explores options in every “direction” Soal
= No information about goal location

[Demo: contours UCS empty (L3D1)]
[Demo: contours UCS pacman small maze (L3D3)]

Video of Demo Contours UCS Pacman Small Maze

Informed Search

Search Heuristics

= A heuristic is:

= A function that estimates how close a state is to a goal //\\\

= Designed for a particular search problem NOPE Gon

= Examples: Manhattan distance, Euclidean distance for
pathing

>
Heuristi - Tron J

< -—-f '
l >

Heuristi — Tron J

75

Arad [

Example: Heuristic Function

[] Vaslui

Timisoara

142

11 Pitesti

98
] Hirsova

86

] Mehadia Urziceni

75

Dobreta [J

= Craiova Eforie

[] Giurgiu

to Bucharest
Arad
Bucharest
Craiova
Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iasi

Lugoj
Mehadia
Neamt
Oradea
Pitesti
Rimnicu Vilcea
Sibiu
Timisoara
Urziceni
Vaslui
Zerind

ﬂtra ight—line distance \

366
0
160
242
161
178
77
151
226
244
241
234
380
98
193
253
329
850
199
374

J

h(X)

Example: Heuristic Function

Heuristic: the number of the largest pancake that is still out of place

4_/3_ h(X)

T I

—— 3—_\

/ _ 33— 0 —/——
4 — ’ ~ /3\:

$ 4 — ~

Greedy Search

= Strategy: expand a node that you think is
closest to a goal state

= Heuristic: estimate of distance to nearest goal for
each state

= A common case:
= Best-first takes you straight to the (wrong) goal

= Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Empty)

Video of Demo Contours Greedy (Pacman Small Maze)

A*: Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n)
Example: Teg Grenager

Admissible Heuristics
= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) isthe true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

Optimality of A* Tree Search: Blocking

Proof:

Imagine B is on the fringe
Some ancestor n of A is on the

fringe, too (maybe Al)

Claim: n will be expanded before B
1. f(n)is less or equal to f(A)

2. f(A)is less than f(B)

All ancestors of A expan

3. nexpands before B
d before B -
f(n) < f(A) < f(B)

A expands before B
A* search is optimal

|

Properties of A*

Uniform-Cost

A*

UCS vs A* Contours

= Uniform-cost expands equally in all

“directions”
St Goal

= A* expands mainly toward the goal,

but does hedge its bets to ensure
optimality Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) — A*

Video of Demo Contours (Pacman Small Maze) — A*

Comparison

SCORE: 0 SCORE: 0 SCORE: 0

Greedy Uniform Cost A*

A* Applications

" \Video games

Pathing / routing problems
Resource planning problems
Robot motion planning

Language analysis
Machine translation
Speech recognition

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Video of Demo Pacman (Tiny Maze) — UCS / A*

2 Pydey - [ciipse il
File Edit Navigate Search Project Run Window |Help
2 - $-0-Q- B F- G- iE-F e i [Byier) £° T
q\“ 1 search demo empty
@ a 2 search -~ contaurs greedy vs ucs (greedy d
. @ 3 search -- contours greedy vs ucs (ucs] c=
@ 4 search -- contours greedy vs ucs (aster)
@ Ssearch - plan tiny astar
QI. 6 search -- pﬂa‘r\w tiny ucs
& 7 vearch - gl‘?ld;, bad
& 8search - greedy good
& 9 search demo maze
@ search demo costs
Run As ’
Run Carfigurations
Organize Favorites
[Console x| ”'—- O = —
<terminated> empty.be
Nupber of unigque ncdes expanded: 113 -
Solucicn Zound
Soluticn coat: 25.5
Nunber of nodes expanded: 41
Nunbey of unigue nodes expanded: 41

11:53 AM

a8/30/2012

Creating Heuristics

YOu GOT

HEURISTILC
UFGRADE!

Creating Admissible Heuristics

= Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

= Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

= |nadmissible heuristics are often useful too

Example: 8 Puzzle

7 2 |4 7)1
s 6 | BLIE:
8 3 1 i8N 6

Start State Actions

3
2

1-6“

-7

————

ST —

What are the states?
How many states?
What are the actions?

How many successors from the start state?
What should the costs be?

!
4

3
5

p)
>
79

Goal State

8 Puzzle |

= Heuristic: Number of tiles misplaced
= Why is it admissible?

" h(start)=8

» This is a relaxed-problem heuristic

Start State Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°6
TILES 13 39 227

Statistics from Andrew Moore

What if we had an easier 8-puzzle where
any tile could slide any direction at any

time, ignoring other tiles?

Total Manhattan distance

Why is it admissible?

h(start)= 3+1+2+..=18

8 Puzzle Il

Start State

Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
TILES 13 39 227
MANHATTAN 12 25 73

8 Puzzle Il

= How about using the actual cost as a heuristic?
= Would it be admissible?

* Would we save on nodes expanded?
* What’s wrong with it? v;? rt

= With A*: a trade-off between quality of estimate and work per node

" As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

= Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

= Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

= Result: A* graph search is optimal

Optimality

Tree search:
= A*js optimal if heuristic is admissible
= UCS is a special case (h =0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h =0 is consistent)

Consistency implies admissibility

In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

