
Announcements

§ This Friday

§ Project 1 due

§ Talk by Jeniya Tabassum

TweeTIME: A Minimally Supervised Method for 
Recognizing and Normalizing Time Expressions in Twitter



Recap:	Search

§ Search	problem:
§ States	(configurations	of	the	world)
§ Actions	and	costs
§ Successor	function	(world	dynamics)
§ Start	state	and	goal	test

§ Search	tree:
§ Nodes:	represent	plans	for	reaching	states
§ Plans	have	costs	(sum	of	action	costs)

§ Search	algorithm:
§ Systematically	builds	a	search	tree
§ Chooses	an	ordering	of	the	fringe	(unexplored	nodes)
§ Optimal:	finds	least-cost	plans



Uniform	Cost	Search

§ Strategy:	expand	lowest	path	cost

§ The	good:	UCS	is	complete	and	optimal!

§ The	bad:
§ Explores	options	in	every	“direction”
§ No	information	about	goal	location

Start Goal

…

c £ 3

c £ 2
c £ 1

[Demo:	contours	UCS	empty	(L3D1)]
[Demo:	contours	UCS	pacman small	maze	(L3D3)]



Video	of	Demo	Contours	UCS	Pacman Small	Maze



Informed	Search



Search	Heuristics
§ A	heuristic	is:

§ A	function	that	estimates how	close	a	state	is	to	a	goal
§ Designed	for	a	particular	search	problem
§ Examples:	Manhattan	distance,	Euclidean	distance	for	

pathing

10

5
11.2



Example:	Heuristic	Function

h(x)



Example:	Heuristic	Function
Heuristic:	the	number	of	the	largest	pancake	that	is	still	out	of	place

4
3

0

2

3

3

3

4

4

3

4

4

4

h(x)



Greedy	Search

§ Strategy:	expand	a	node	that	you	think	is	
closest	to	a	goal	state
§ Heuristic:	estimate	of	distance	to	nearest	goal	for	
each	state

§ A	common	case:
§ Best-first	takes	you	straight	to	the	(wrong)	goal

§ Worst-case:	like	a	badly-guided	DFS

…
b

…
b

[Demo:	contours	greedy	empty	(L3D1)]	
[Demo:	contours	greedy	pacman small	maze	(L3D4)]



Video	of	Demo	Contours	Greedy	(Empty)



Video	of	Demo	Contours	Greedy	(Pacman Small	Maze)



A*: Combining	UCS	and	Greedy

§ Uniform-cost orders	by	path	cost,	or	backward	cost		g(n)
§ Greedy orders	by	goal	proximity,	or	forward	cost		h(n)

§ A*	Search orders	by	the	sum:	f(n)	=	g(n)	+	h(n)

S a d

b

G
h=5

h=6

h=2

1

8

1
1

2

h=6 h=0

c

h=7

3

e h=1
1

Example:	Teg Grenager

S

a

b

c

ed

dG

G

g	=	0	
h=6

g	=	1	
h=5

g	=	2	
h=6

g	=	3	
h=7

g	=	4	
h=2

g	=	6	
h=0

g	=	9	
h=1

g	=	10	
h=2

g	=	12	
h=0



Admissible	Heuristics

§ A	heuristic	h is	admissible (optimistic)	if:

where															is	the	true	cost	to	a	nearest	goal

§ Examples:

§ Coming	up	with	admissible	heuristics	is	most	of	what’s	involved	
in	using	A*	in	practice.

4
15



Optimality	of	A*	Tree	Search:	Blocking

Proof:
§ Imagine	B	is	on	the	fringe
§ Some	ancestor	n of	A	is	on	the	

fringe,	too	(maybe	A!)
§ Claim:	n will	be	expanded	before	B

1. f(n)	is	less	or	equal	to	f(A)
2. f(A)	is	less	than	f(B)
3. n expands	before	B

§ All	ancestors	of	A	expand	before	B
§ A	expands	before	B
§ A*	search	is	optimal

…



Properties	of	A*

…
b

…
b

Uniform-Cost A*



UCS	vs A*	Contours

§ Uniform-cost	expands	equally	in	all	
“directions”

§ A*	expands	mainly	toward	the	goal,	
but	does	hedge	its	bets	to	ensure	
optimality

Start Goal

Start Goal

[Demo:	contours	UCS	/	greedy	/	A*	empty	(L3D1)]
[Demo:	contours	A*	pacman small	maze	(L3D5)]



Video	of	Demo	Contours	(Empty)	-- UCS



Video	of	Demo	Contours	(Empty)	-- Greedy



Video	of	Demo	Contours	(Empty)	– A*



Video	of	Demo	Contours	(Pacman Small	Maze)	– A*



Comparison

Greedy Uniform	Cost A*



A*	Applications

§ Video	games
§ Pathing /	routing	problems
§ Resource	planning	problems
§ Robot	motion	planning
§ Language	analysis
§ Machine	translation
§ Speech	recognition
§ …

[Demo:	UCS	/	A*	pacman tiny	maze	(L3D6,L3D7)]
[Demo:	guess	algorithm	Empty	Shallow/Deep	(L3D8)]



Video	of	Demo	Pacman (Tiny	Maze)	– UCS	/	A*



Creating	Heuristics



Creating	Admissible	Heuristics

§ Most	of	the	work	in	solving	hard	search	problems	optimally	is	in	coming	up	
with	admissible	heuristics

§ Often,	admissible	heuristics	are	solutions	to	relaxed	problems,	where	new	
actions	are	available

§ Inadmissible	heuristics	are	often	useful	too

15
366



Example:	8	Puzzle

§ What	are	the	states?
§ How	many	states?
§ What	are	the	actions?
§ How	many	successors	from	the	start	state?
§ What	should	the	costs	be?

Start	State Goal	StateActions



8	Puzzle	I

§ Heuristic:	Number	of	tiles	misplaced
§ Why	is	it	admissible?
§ h(start)	=
§ This	is	a	relaxed-problem heuristic

8

Average	nodes	expanded	
when	the	optimal	path	has…
…4	steps …8	steps …12	steps

UCS 112 6,300 3.6	x	106

TILES 13 39 227

Start	State Goal	State

Statistics	from	Andrew	Moore



8	Puzzle	II

§ What	if	we	had	an	easier	8-puzzle	where	
any	tile	could	slide	any	direction	at	any	
time,	ignoring	other	tiles?

§ Total	Manhattan	distance

§ Why	is	it	admissible?

§ h(start)	= 3	+	1	+	2	+	…	=	18
Average	nodes	expanded	
when	the	optimal	path	has…
…4	steps …8	steps …12	steps

TILES 13 39 227
MANHATTAN 12 25 73

Start	State Goal	State



8	Puzzle	III

§ How	about	using	the	actual	cost as	a	heuristic?
§ Would	it	be	admissible?
§ Would	we	save	on	nodes	expanded?
§ What’s	wrong	with	it?

§ With	A*:	a	trade-off	between	quality	of	estimate	and	work	per	node
§ As	heuristics	get	closer	to	the	true	cost,	you	will	expand	fewer	nodes	but	usually	
do	more	work	per	node	to	compute	the	heuristic	itself



Consistency	of	Heuristics

§ Main	idea:	estimated	heuristic	costs	≤	actual	costs

§ Admissibility:	heuristic	cost	≤	actual	cost	to	goal

h(A)	≤ actual	cost	from	A	to	G

§ Consistency:	heuristic	“arc”	cost	≤	actual	cost	for	each	arc

h(A)	– h(C) ≤	cost(A	to	C)

§ Consequences	of	consistency:

§ The	f	value	along	a	path	never	decreases

h(A)	≤	cost(A	to	C)	+ h(C)

§ A*	graph	search	is	optimal

3

A

C

G

h=4 h=1
1

h=2



Optimality	of	A*	Graph	Search

§ Sketch:	consider	what	A*	does	with	a	
consistent	heuristic:

§ Fact	1:	In	tree	search,	A*	expands	nodes	in	
increasing	total	f	value	(f-contours)

§ Fact	2:	For	every	state	s,	nodes	that	reach	
s	optimally	are	expanded	before	nodes	
that	reach	s	suboptimally

§ Result:	A*	graph	search	is	optimal

…

f	£ 3

f	£ 2

f	£ 1



Optimality

§ Tree	search:
§ A*	is	optimal	if	heuristic	is	admissible
§ UCS	is	a	special	case	(h	=	0)

§ Graph	search:
§ A*	optimal	if	heuristic	is	consistent
§ UCS	optimal	(h	=	0	is	consistent)

§ Consistency	implies	admissibility

§ In	general,	most	natural	admissible	heuristics	
tend	to	be	consistent,	especially	if	from	
relaxed	problems


