
Constraint	Satisfaction	Problems

§ Standard	search	problems:
§ State	is	a	“black	box”:	arbitrary	data	structure
§ Goal	test	can	be	any	function	over	states
§ Successor	function	can	also	be	anything

§ Constraint	satisfaction	problems	(CSPs):
§ A	special	subset	of	search	problems
§ State	is	defined	by	variables	Xi with	values	from	a	

domain	D (sometimes	D depends	on	i)
§ Goal	test	is	a	set	of	constraints	specifying	allowable	

combinations	of	values	for	subsets	of	variables

§ Simple	example	of	a	formal	representation	language

§ Allows	useful	general-purpose	algorithms	with	more	
power	than	standard	search	algorithms



CSP	Examples



Example:	Map	Coloring

§ Variables:

§ Domains:

§ Constraints:	adjacent	regions	must	have	different	
colors

§ Solutions	are	assignments	satisfying	all	
constraints,	e.g.:

Implicit:

Explicit:



Example:	N-Queens

§ Formulation	1:
§ Variables:
§ Domains:
§ Constraints



Example:	N-Queens

§ Formulation	2:
§ Variables:

§ Domains:

§ Constraints:

Implicit:

Explicit:



Waltz	on	Simple	Scenes

§ Assume	all	objects:
§ Have	no	shadows	or	cracks
§ Three-faced	vertices
§ “General	position”:	no	junctions	
change	with	small	movements	of	
the	eye.

§ Then	each	line	on	image	is	one	of	
the	following:
§ Boundary	line	(edge	of	an	object)	
(®)	with	right	hand	of	arrow	
denoting	“solid”	and	left	hand	
denoting	“space”

§ Interior	convex	edge	(+)
§ Interior	concave	edge	(-)

6



Legal	Junctions

§ Only	certain	junctions	are	
physically	possible

§ How	can	we	formulate	a	CSP	to	
label	an	image?

§ Variables:	vertices
§ Domains:	junction	labels
§ Constraints:	both	ends	of	a	line	

should	have	the	same	label

7

x

y
(x,y) in

, , …



Constraint	Graphs

§ Binary	CSP:	each	constraint	relates	(at	most)	two	
variables

§ Binary	constraint	graph:	nodes	are	variables,	arcs	
show	constraints

§ General-purpose	CSP	algorithms	use	the	graph	
structure	to	speed	up	search.	E.g.,	Tasmania	is	an	
independent	subproblem!

[Demo:	CSP	applet	(made	available	by	aispace.org)	-- n-queens]



Example:	Cryptarithmetic

§ Variables:

§ Domains:

§ Constraints:



Real-World	CSPs

§ Scheduling	problems:	e.g.,	when	can	we	all	meet?
§ Timetabling	problems:	e.g.,	which	class	is	offered	when	and	where?
§ Assignment	problems:	e.g.,	who	teaches	what	class
§ Hardware	configuration
§ Transportation	scheduling
§ Factory	scheduling
§ Circuit	layout
§ Fault	diagnosis
§ …	lots	more!

§ Many	real-world	problems	involve	real-valued	variables…



Standard	Search	Formulation

§ Standard	search	formulation	of	CSPs

§ States	defined	by	the	values	assigned	
so	far	(partial	assignments)
§ Initial	state:	the	empty	assignment,	{}
§ Successor	function:	assign	a	value	to	an	
unassigned	variable

§ Goal	test:	the	current	assignment	is	
complete	and	satisfies	all	constraints

§ We’ll	start	with	the	straightforward,	
naïve	approach,	then	improve	it



Backtracking	Search

§ Backtracking	search	is	the	basic	uninformed	algorithm	for	solving	CSPs

§ Idea	1:	One	variable	at	a	time
§ Variable	assignments	are	commutative,	so	fix	ordering
§ I.e.,	[WA	=	red	then	NT	=	green]	same	as	[NT	=	green	then	WA	=	red]
§ Only	need	to	consider	assignments	to	a	single	variable	at	each	step

§ Idea	2:	Check	constraints	as	you	go
§ I.e.	consider	only	values	which	do	not	conflict	with	previous	assignments
§ Might	have	to	do	some	computation	to	check	the	constraints
§ “Incremental	goal	test”

§ Depth-first	search	with	these	two	improvements
is	called	backtracking	search	(not	the	best	name)

§ Can	solve	n-queens	for	n	» 25



Backtracking	Example



Backtracking	Search

§ Backtracking	=	DFS	+	variable-ordering	+	fail-on-violation
§ What	are	the	choice	points?

[Demo:	coloring	-- backtracking]



Improving	Backtracking

§ General-purpose	ideas	give	huge	gains	in	speed

§ Filtering:	Can	we	detect	inevitable	failure	early?

§ Ordering:
§ Which	variable	should	be	assigned	next?
§ In	what	order	should	its	values	be	tried?

§ Structure:	Can	we	exploit	the	problem	structure?



Improving	Backtracking

From https://kti.mff.cuni.cz/~bartak/constraints/propagation.html



Filtering



§ Filtering:	Keep	track	of	domains	for	unassigned	variables	and	cross	off	bad	options
§ Forward	checking:	Cross	off	values	that	violate	a	constraint	when	added	to	the	existing	

assignment

Filtering:	Forward	Checking

WA
SA
NT Q

NSW
V

[Demo:	coloring	-- forward	checking]



Video	of	Demo	Coloring	– Backtracking	with	Forward	Checking



Filtering:	Constraint	Propagation

§ Forward	checking	propagates	information	from	assigned	to	unassigned	variables,	but	
doesn't	provide	early	detection	for	all	failures:

§ NT	and	SA	cannot	both	be	blue!
§ Why	didn’t	we	detect	this	yet?
§ Constraint	propagation:	reason	from	constraint	to	constraint

WA SA

NT Q

NSW

V



Consistency	of	A	Single	Arc

§ An	arc	X	® Y	is	consistent iff for	every	x	in	the	tail	there	is	some	y	in	the	head	which	
could	be	assigned	without	violating	a	constraint

§ Forward	checking:	Enforcing	consistency	of	arcs	pointing	to	each	new	assignment

Delete	from	the	tail!

WA SA

NT Q

NSW

V



Arc	Consistency	of	an	Entire	CSP
§ A	simple	form	of	propagation	makes	sure	all	arcs	are	consistent:

§ Important:	If	X	loses	a	value,	neighbors	of	X	need	to	be	rechecked!
§ Arc	consistency	detects	failure	earlier	than	forward	checking
§ Can	be	run	as	a	preprocessor	or	after	each	assignment	
§ What’s	the	downside	of	enforcing	arc	consistency?

Remember:	
Delete	from	
the	tail!

WA SA

NT Q

NSW

V



Enforcing	Arc	Consistency	in	a	CSP

§ Runtime:	O(n2d3),	can	be	reduced	to	O(n2d2)
§ …	but	detecting	all	possible	future	problems	is	NP-hard	– why?

[Demo:	CSP	applet	(made	available	by	aispace.org)	-- n-queens]



Limitations	of	Arc	Consistency

§ After	enforcing	arc	
consistency:
§ Can	have	one	solution	left
§ Can	have	multiple	solutions	left
§ Can	have	no	solutions	left	(and	
not	know	it)

§ Arc	consistency	still	runs	
inside	a	backtracking	search!

What	went	
wrong	here?

[Demo:	coloring	-- arc	consistency]
[Demo:	coloring	-- forward	checking]



Ordering



Ordering:	Minimum	Remaining	Values

§ Variable	Ordering:	Minimum	remaining	values	(MRV):
§ Choose	the	variable	with	the	fewest	legal	left	values	in	its	domain

§ Why	min	rather	than	max?
§ Also	called	“most	constrained	variable”
§ “Fail-fast”	ordering



Ordering:	Least	Constraining	Value

§ Value	Ordering:	Least	Constraining	Value
§ Given	a	choice	of	variable,	choose	the	least	
constraining	value

§ I.e.,	the	one	that	rules	out	the	fewest	values	in	
the	remaining	variables

§ Note	that	it	may	take	some	computation	to	
determine	this!		(E.g.,	rerunning	filtering)

§ Why	least	rather	than	most?

§ Combining	these	ordering	ideas	makes
1000	queens	feasible

[Demo:	coloring	– backtracking	+	AC	+	ordering]


