Constraint Satisfaction Problems

Standard search problems:
= State is a “black box”: arbitrary data structure
= Goal test can be any function over states
= Successor function can also be anything

Constraint satisfaction problems (CSPs):
= A special subset of search problems

= State is defined by variables X; with values from a
domain D (sometimes D depends on i)

" Goal testis a set of constraints specifying allowable
combinations of values for subsets of variables

Simple example of a formal representation language

Allows useful general-purpose algorithms with more
power than standard search algorithms

Example: Map Coloring

Variables: WA, NT, Q, NSW, V, SA, T

Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all
constraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=blue, T=green}

Example: N-Queens

" Formulation 1:
" Variables: X,
= Domains: {0,1}
= Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi,j.k (Xij Xg;) € {(0,0),(0,1), (1,0} X, =
Vi, j, k (Xij, Xitk j+x) € 1(0,0),(0,1),(1,0)} 0,
Vi, j, k (Xij, Xitk j—k) € {(0,0),(0,1),(1,0)}

Example: N-Queens

= Formulation 2:

Q1

» Variables: Qg Q2
| @3

" Domains: {1,2,3,...N} Qg4

" Constraints:

Implicit: V4,5 non-threatening(Q;, @;)

Explicit: (Q1,Q»2) € {(1,3),(1,4),...}

Waltz on Simple Scenes

= Assume all objects:
= Have no shadows or cracks
= Three-faced vertices
= “General position”: no junctions

change with small movements of A
the eye. "
= Then each line on image is one of
the following: =~

= Boundary line (edge of an object)
(—) with right hand of arrow
denoting “solid” and left hand
denoting “space”

= |nterior convex edge (+)
* |nterior concave edge (-)

Legal Junctions

Only certain junctions are A Aor 7
physically possible N A K RS

IHObWI can we fo?rmulate a CSP to
abel an image: + - i)
Variables: vertices \(Y \r{ \YK \Y
Domains: junction labels <—Ff *<T_€ v <’—L€

Constraints: both ends of a line

should have the same label ,,/ﬁ ,}L\ /F
.
-
A - (X,y)in < %} %j
\R § , l , [T | I7/

Constraint Graphs

= Binary CSP: each constraint relates (at most) two @

variables e
@] -

= Binary constraint graph: nodes are variables, arcs
show constraints

= General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Example: Cryptarithmetic

= Variables:

FTUWRO X1 Xo X3
= Domains:
{0,1,2,3,4,5,6,7,8,9}
= Constraints:

alldiff(F, T, U, W, R, O)

O+0=R+10-X;

Real-World CSPs

Scheduling problems: e.g., when can we all meet?

Timetabling problems: e.g., which class is offered when and where?
Assignment problems: e.g., who teaches what class

Hardware configuration
Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...

Standard Search Formulation

= Standard search formulation of CSPs

= States defined by the values assigned
so far (partial assignments)
" |nitial state: the empty assignment, {}

= Successor function: assign a value to an
unassigned variable

= Goal test: the current assignment is
complete and satisfies all constraints

= We'll start with the straightforward,
naive approach, then improve it

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
= Variable assignments are commutative, so fix ordering
= |.e., [WA=redthen NT = green] same as [NT = green then WA = red]
= Only need to consider assignments to a single variable at each step

ldea 2: Check constraints as you go
= |.e. consider only values which do not conflict with previous assignments
= Might have to do some computation to check the constraints
= “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

Can solve n-queens for n = 25

Backtracking Example

e

A

- ¢ &
—
"o

&S

oo

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

= Backtracking = DFS + variable-ordering + fail-on-violation

= What are the choice points?

[Demo: coloring -- backtracking]

Improving Backtracking

General-purpose ideas give huge gains in speed

Filtering: Can we detect inevitable failure early?

Ordering:
= Which variable should be assigned next?
" |n what order should its values be tried?

Structure: Can we exploit the problem structure?

Improving Backtracking

iInstantiated currently not yel instantiated
variables ¥, i<cy iInstantiated variables ¥, i=cy
variable ¥,

look ahead
. forward checking

backltracking / / \

From https://kti.mff.cuni.cz/~bartak/constraints/propagation.html

Filtering

Filtering: Forward Checking

= Filtering: Keep track of domains for unassigned variables and cross off bad options
= Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| Q
SA NSW.
Vv

WA NT Q NSW Vv SA

[Demo: coloring -- forward checking]

Video of Demo Coloring — Backtracking with Forward Checking

Filtering: Constraint Propagation

= Forward checking propagates information from assigned to unassigned variables, but
doesn't provide early detection for all failures:

WA NT Q NSW Vv SA
VT i T Ir I IrE IrE I
‘ A s]| 'EECEECEECE] UE
b I Tl 1L I

= NT and SA cannot both be blue!
= Why didn’t we detect this yet?
= Constraint propagation: reason from constraint to constraint

Consistency of A Single Arc

= Anarc X — Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

L

NT WA NT Q NSW v SA
Q

3 C___ I IFTE T I 1

NSW
Vv

Delete from the tail!

= Forward checking: Enforcing consistency of arcs pointing to each new assignment

Arc Consistency of an Entire CSP

= Asimple form of propagation makes sure all arcs are consistent:

SA

NT i WA NT Q NSW \Y;
A Tw I | 1 [H E[ETN]

v 1\ VVV

" |mportant: If X loses a value, neighbors of X need to be rechecked!
= Arc consistency detects failure earlier than forward checking

= Can berun as a preprocessor or after each assignment

= What's the downside of enforcing arc consistency?

Remember:
Delete from
the tail!

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X3, Xy, ..., X,}
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X;) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[X;] do
add (X, X)) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed < false
for each z in DoMAIN[X;] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete = from DOMAIN[X;]; removed — true
return removed

= Runtime: O(n%d3), can be reduced to O(n?d?)
= ... but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

= After enforcing arc
consistency:

= Can
= Can
= Can

nave one solution left

nave multiple solutions left

nave no solutions left (and

not know it)

= Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]

Ordering

Ordering: Minimum Remaining Values

= Variable Ordering: Minimum remaining values (MRV):

" Choose the variable with the fewest legal left values in its domain

~D

" Why min rather than max?

= Also called “most constrained variable”

= “Fail-fast” ordering

Ordering: Least Constraining Value

= Value Ordering: Least Constraining Value *
= Given a choice of variable, choose the least ‘_L,;«
constraining value
= |.e., the one that rules out the fewest values in ‘_Lt <
the remaining variables ‘_L%
= Note that it may take some computation to

determine this! (E.g., rerunning filtering)

= Why least rather than most?

= Combining these ordering ideas makes
1000 queens feasible

[Demo: coloring — backtracking + AC + ordering]

