Machine Learning

= Machine learning: how to acquire a model from data / experience
= |earning parameters (e.g. probabilities)
= |earning structure (e.g. BN graphs)
= |Learning hidden concepts (e.g. clustering, neural nets)

" Today: model-based classification with Naive Bayes



Classification




General Naive Bayes

= A general Naive Bayes model: “

|Y| parameters

P(Y,F1...Fp) = P(Y)HP(FZ-\Y) Q Q e

Y] x |F|" values nx |F| x |Y]

parameters

= We only have to specify how each feature depends on the class
"= Total number of parameters is linear in n
= Modelis very simplistic, but often works anyway



General Naive Bayes

= What do we need in order to use Naive Bayes?

= |Inference method (we just saw this part)
= Start with a bunch of probabilities: P(Y) and the P(F,|Y) tables
= Use standard inference to compute P(Y|F;...F,)
= Nothing new here

= Estimates of local conditional probability tables
= P(Y), the prior over labels
= P(F;|Y) for each feature (evidence variable)

= These probabilities are collectively called the parameters of the model
and denoted by 0

= Up until now, we assumed these appeared by magic, but...
= ..they typically come from training data counts: we’ll look at this soon



Naive Bayes for Digits

= Naive Bayes: Assume all features are independent effects of the label

= Simple digit recognition version: “
= One feature (variable) F; for each grid position <i,j>
= Feature values are on / off, based on whether intensity

is more or less than 0.5 in underlying image
= Each input maps to a feature vector, e.g. ° G o G
A~ (Foo=0FRo1=0Fop=1Fa=1Foa=0 .. Fis;5=0)
= Here: lots of features, each is binary valued
= Naive Bayes model: P(Y|Fpo...F1515) < P(Y) HP(F,L-,J-\Y) (Bayes' theorem)

i,]
= \What do we need to learn?



Naive Bayes for Text

= Bag-of-words Naive Bayes:
= Features: W, is the word at position i
= As before: predict label conditioned on feature variables (spam vs. ham)
= As before: assume features are conditionally independent given label

= New: each W, is identically distributed Word at position
i, not i word in
' he dicti !
= Generative model: P(Y, W7 ... Wy) = P(Y) || P(W;]Y) the dictionary
1 — )

= “Tied” distributions and bag-of-words
= Usually, each variable gets its own conditional probability distribution P(F|Y)

" |n a bag-of-words model
= Each position is identically distributed
= All positions share the same conditional probs P(W]Y)
= Why make this assumption?
= Called “bag-of-words” because model is insensitive to word order or reordering



Important Concepts

= Data: labeled instances (e.g. emails marked spam/ham)
" Training set
= Held out set
= Test set

= Features: attribute-value pairs which characterize each x Training

: : Data
= Experimentation cycle

= Learn parameters (e.g. model probabilities) on training set
* (Tune hyperparameters on held-out set)

= Compute accuracy of test set

= Very important: never “peek” at the test set! Fractice —(

Exam

= Evaluation (many metrics possible, e.g. accuracy) Held-Out
= Accuracy: fraction of instances predicted correctly Data

= Qverfitting and generalization ' RIS
= \Want a classifier which does well on test data

= Qverfitting: fitting the training data very closely, but not Test
generalizing well Data

=  WEe'll investigate overfitting and generalization formally in a few
lectures




Empirical Risk Minimization

" Empirical risk minimization
= Basic principle of machine learning
= We want the model (classifier, etc) that does best on the true test distribution
= Don’t know the true distribution so pick the best model on our actual training set
" Finding “the best” model on the training set is phrased as an optimization problem

= Main worry: overfitting to the training set

= Better with more training data (less sampling variance, training more like test)

= Better if we limit the complexity of our hypotheses (regularization and/or small
hypothesis spaces)



Parameter Estimation

= Estimating the distribution of a random variable

= Flicitation: ask a human (why is this hard?)

= Empirically: use training data (learning!)
= E.g.: for each outcome x, look at the empirical rate of that value:

Py (z) = count(x) @ @ @
MLA™ ™ total samples Py(r) =2/3

= This is the estimate that maximizes the likelihood of the data

L(z,0) = [] Po(=,)



Maximum Likelihood?

= Relative frequencies are the maximum likelihood estimates

Onrrr, = arg max P(X]0) count(z)

total samples

= Puy(z)=
= arg gnaxHP@(Xi)

= Another option is to consider the most likely parameter value given the data

Orrap = arg max P(0|X)
0

= arg gnax P(X|0)P(0)/P(X) > 7?7

= arg max P(X|0)P(0)
0



P(features, C = 2)
P(C=2)=0.1
P(on|C =2)=0.8
P(on|C =2) =0.1
P(off|C =2) =0.1

P(on|C =2) = 0.01

Example: Overfitting

2 wins!!

P(features,C = 3)

P(C=3)=0.1

P(on|C=3)=0.8
P(on|C =3)=0.9
P(off|C =3) =0.7

P(on|C =3) =0.0




Overfitting

Error
Validation set
; Training set
0 Early Number of
stopping iterations

point



Unseen Events




Laplace Smoothing

= Laplace’s estimate:

= Pretend you saw every outcome @ @ @
once more than you actually did

_ c(x)+1
PLAPGD) = S 1) + 1 Prrr(X) =
_ c(z) +1
N + | X] Prap(X) =

= Can derive this estimate with
Dirichlet priors (see cs281a)



Laplace Smoothing

= Laplace’s estimate (extended):

= Pretend you saw every outcome k extra times @ @ @

c(x) + k
P Tr) =

AP k() N + FIX]

Prapo(X) =
= What’s Laplace with k =07?

= kis the strength of the prior

Prapi1(X) =
= Laplace for conditionals:

= Smooth each condition independently: Prap100(X) =

c(x,y) + k
c(y) + k| X|

Prapr(zly) =



Estimation: Linear Interpolation®

" |n practice, Laplace often performs poorly for P(X]|Y):
* When |X]| is very large
= When |Y| is very large

= Another option: linear interpolation

= Also get the empirical P(X) from the data
= Make sure the estimate of P(X]|Y) isn’t too different from the empirical P(X)

Prin(zly) = aP(z|y) + (1.0 — o) P(x)

= Whatifouis0? 17?
= This is called ‘backoff’



Real NB: Smoothing

" For real classification problems, smoothing is critical

= New odds ratios:

P(W|ham) P(W|spam)
P(W|spam) P(W|ham)
helvetica : 11.4 verdana : 28.8
seems : 10.8 Credit : 28.4
group : 10.2 ORDER : 27.2
ago : 8.4 <FONT> : 26.9
areas : 8.3 money : 26.5

Do these make more sense?



Tuning

TWEAK- OG- MATIC 9000




Tuning on Held-Out Data

= Now we’ve got two kinds of unknowns
= Parameters: the probabilities P(X|Y), P(Y)

» Hyperparameters: e.g. the amount / type of
smoothing to do, k, a

= \What should we learn where?

" Learn parameters from training data
" Tune hyperparameters on different data
= Why?

= For each value of the hyperparameters, train
and test on the held-out data

= Choose the best value and do a final test on
the test data

accuracy

training

held-out
test




Features

© Made of Metal

© 100,000-mile
drivetrain warranty




Errors, and What to Do

= Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the
latest version of OmniPage Pro, for just $99.99* - the reqgular
list price is $499! The most common question we've received
about this offer is - Is this genuine? We would like to assure
you that this offer is authorized by ScanSoft, is genuine and
valid. You can get the

. To receive your $30 Amazon.com promotional certificate,
click through to

http://www.amazon.com/apparel

and see the prominent link for the $30 offer. All details are
there. We hope you enjoyed receiving this message. However, if
you'd rather not receive future e-mails announcing new store
launches, please click




What to Do About Errors?

" Need more features— words aren’t enough!
= Have you emailed the sender before?
= Have 1K other people just gotten the same email?
= |sthe sending information consistent?
= |sthe email in ALL CAPS?
= Do inline URLs point where they say they point?
= Does the email address you by (your) name?

O Made of Metal

= Can add these information sources as new | o }’xp,?iq-m-.u.mw
- I ri ] WA
variables in the NB model vetrain

= Next class we’ll talk about classifiers which let
you easily add arbitrary features more easily,
and, later, how to induce new features




Baselines

= First step: get a baseline
= Baselines are very simple “straw man” procedures
= Help determine how hard the task is
= Help know what a “good” accuracy is

= Weak baseline: most frequent label classifier
= Gives all test instances whatever label was most common in the training set
= E.g. for spam filtering, might label everything as ham
= Accuracy might be very high if the problem is skewed
= E.g. calling everything “ham” gets 66%, so a classifier that gets 70% isn’t very good...

= For real research, usually use previous work as a (strong) baseline



Confidences from a Classifier

The confidence of a probabilistic classifier:
= Posterior probability of the top label

confidence(x) = max P(y|x)

= Represents how sure the classifier is of the classification
= Any probabilistic model will have confidences
= No guarantee confidence is correct

Calibration
= Weak calibration: higher confidences mean higher accuracy
= Strong calibration: confidence predicts accuracy rate
= What’s the value of calibration?

accuracy accuracy

accuracy

P(y|x)

P(y|x)

P(y|x)



Summary

Bayes rule lets us do diagnostic queries with causal probabilities

The naive Bayes assumption takes all features to be independent given the class label
We can build classifiers out of a naive Bayes model using training data

Smoothing estimates is important in real systems

Classifier confidences are useful, when you can get them



