Machine Learning

- Machine learning: how to acquire a model from data / experience
 - Learning parameters (e.g. probabilities)
 - Learning structure (e.g. BN graphs)
 - Learning hidden concepts (e.g. clustering, neural nets)
- Today: model-based classification with Naive Bayes

Classification

General Naïve Bayes

• A general Naive Bayes model:

|Y| parameters

$$P(\mathbf{Y}, \mathbf{F}_1 \dots \mathbf{F}_n) = P(\mathbf{Y}) \prod_i P(\mathbf{F}_i | \mathbf{Y})$$

$$|\mathbf{Y}| \ge |\mathbf{F}|^n \text{ values}$$

$$n \ge |\mathbf{F}| \ge |\mathbf{Y}|$$

n x |F| x |Y| parameters

- We only have to specify how each feature depends on the class
- Total number of parameters is *linear* in n
- Model is very simplistic, but often works anyway

General Naïve Bayes

- What do we need in order to use Naïve Bayes?
 - Inference method (we just saw this part)
 - Start with a bunch of probabilities: P(Y) and the P(F_i|Y) tables
 - Use standard inference to compute P(Y|F₁...F_n)
 - Nothing new here
 - Estimates of local conditional probability tables
 - P(Y), the prior over labels
 - P(F_i|Y) for each feature (evidence variable)
 - These probabilities are collectively called the *parameters* of the model and denoted by θ
 - Up until now, we assumed these appeared by magic, but...
 - ...they typically come from training data counts: we'll look at this soon

Naïve Bayes for Digits

- Naïve Bayes: Assume all features are independent effects of the label
- Simple digit recognition version:
 - One feature (variable) F_{ii} for each grid position <i,j>
 - Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.

$$\rightarrow \langle F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \dots F_{15,15} = 0 \rangle$$

- Here: lots of features, each is binary valued
- Naïve Bayes model: $P(Y|F_{0,0} \dots F_{15,15}) \propto P(Y) \prod P(F_{i,j}|Y)$ (Bayes' theorem)
- What do we need to learn?

Naïve Bayes for Text

- Bag-of-words Naïve Bayes:
 - Features: W_i is the word at position i
 - As before: predict label conditioned on feature variables (spam vs. ham)
 - As before: assume features are conditionally independent given label
 - New: each W_i is identically distributed

Word at position *i*, not ith word in the dictionary!

• Generative model:
$$P(Y, W_1 \dots W_n) = P(Y) \prod_i P(W_i | Y)$$

- "Tied" distributions and bag-of-words
 - Usually, each variable gets its own conditional probability distribution P(F|Y)
 - In a bag-of-words model
 - Each position is identically distributed
 - All positions share the same conditional probs P(W|Y)
 - Why make this assumption?
 - Called "bag-of-words" because model is insensitive to word order or reordering

Important Concepts

- Data: labeled instances (e.g. emails marked spam/ham)
 - Training set
 - Held out set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on held-out set)
 - Compute accuracy of test set
 - Very important: never "peek" at the test set!
- Evaluation (many metrics possible, e.g. accuracy)
 - Accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - Want a classifier which does well on *test* data
 - Overfitting: fitting the training data very closely, but not generalizing well
 - We'll investigate overfitting and generalization formally in a few lectures

Empirical Risk Minimization

Empirical risk minimization

- Basic principle of machine learning
- We want the model (classifier, etc) that does best on the true test distribution
- Don't know the true distribution so pick the best model on our actual training set
- Finding "the best" model on the training set is phrased as an optimization problem

Main worry: overfitting to the training set

- Better with more training data (less sampling variance, training more like test)
- Better if we limit the complexity of our hypotheses (regularization and/or small hypothesis spaces)

Parameter Estimation

- Estimating the distribution of a random variable
- Elicitation: ask a human (why is this hard?)
- Empirically: use training data (learning!)
 - E.g.: for each outcome x, look at the *empirical rate* of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

$$\begin{array}{c} \mathbf{r} \quad \mathbf{r} \quad \mathbf{b} \\ P_{\mathsf{ML}}(\mathbf{r}) = 2/3 \end{array}$$

This is the estimate that maximizes the *likelihood of the data*

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$

Maximum Likelihood?

Relative frequencies are the maximum likelihood estimates

$$\theta_{ML} = \arg \max_{\theta} P(\mathbf{X}|\theta)$$

= $\arg \max_{\theta} \prod_{i} P_{\theta}(X_{i})$ $P_{\mathsf{ML}}(x) = \frac{\operatorname{count}(x)}{\operatorname{total samples}}$

Another option is to consider the most likely parameter value given the data

$$\theta_{MAP} = \arg \max_{\theta} P(\theta | \mathbf{X})$$

= $\arg \max_{\theta} P(\mathbf{X} | \theta) P(\theta) / P(\mathbf{X})$ \longrightarrow ????
= $\arg \max_{\theta} P(\mathbf{X} | \theta) P(\theta)$

Example: Overfitting

2 wins!!

Overfitting

Unseen Events

Laplace Smoothing

- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$
$$= \frac{c(x) + 1}{N + |X|}$$

$$P_{ML}(X) =$$

$$P_{LAP}(X) =$$

 Can derive this estimate with Dirichlet priors (see cs281a)

Laplace Smoothing

Laplace's estimate (extended):

Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What's Laplace with k = 0?
- k is the strength of the prior
- Laplace for conditionals:
 - Smooth each condition independently:

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$

 $P_{LAP,0}(X) =$

 $P_{LAP,1}(X) =$

 $P_{LAP,100}(X) =$

Estimation: Linear Interpolation*

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large
- Another option: linear interpolation
 - Also get the empirical P(X) from the data
 - Make sure the estimate of P(X|Y) isn't too different from the empirical P(X)

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha)\hat{P}(x)$$

- What if α is 0? 1?
- This is called 'backoff'

Real NB: Smoothing

- For real classification problems, smoothing is critical
- New odds ratios:

 $rac{P(W| extsf{spam})}{P(W| extsf{ham})}$

helvetica	:	11.4
seems	:	10.8
group	:	10.2
ago	:	8.4
areas	:	8.3

P(W|ham)

 $\overline{P(W|\text{spam})}$

verdana	:	28.8
Credit	:	28.4
ORDER	•	27.2
	:	26.9
money	:	26.5
•••		

Do these make more sense?

Tuning

Tuning on Held-Out Data

Now we've got two kinds of unknowns

- Parameters: the probabilities P(X|Y), P(Y)
- Hyperparameters: e.g. the amount / type of smoothing to do, k, α

What should we learn where?

- Learn parameters from training data
- Tune hyperparameters on different data
 - Why?
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data

Features

Errors, and What to Do

Examples of errors

Dear GlobalSCAPE Customer,

GlobalSCAPE has partnered with ScanSoft to offer you the latest version of OmniPage Pro, for just \$99.99* - the regular list price is \$499! The most common question we've received about this offer is - Is this genuine? We would like to assure you that this offer is authorized by ScanSoft, is genuine and valid. You can get the . . .

. . . To receive your \$30 Amazon.com promotional certificate, click through to

http://www.amazon.com/apparel

and see the prominent link for the \$30 offer. All details are there. We hope you enjoyed receiving this message. However, if you'd rather not receive future e-mails announcing new store launches, please click . . .

What to Do About Errors?

Need more features— words aren't enough!

- Have you emailed the sender before?
- Have 1K other people just gotten the same email?
- Is the sending information consistent?
- Is the email in ALL CAPS?
- Do inline URLs point where they say they point?
- Does the email address you by (your) name?
- Can add these information sources as new variables in the NB model
- Next class we'll talk about classifiers which let you easily add arbitrary features more easily, and, later, how to induce new features

Baselines

• First step: get a baseline

- Baselines are very simple "straw man" procedures
- Help determine how hard the task is
- Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
 - Gives all test instances whatever label was most common in the training set
 - E.g. for spam filtering, might label everything as ham
 - Accuracy might be very high if the problem is skewed
 - E.g. calling everything "ham" gets 66%, so a classifier that gets 70% isn't very good...
- For real research, usually use previous work as a (strong) baseline

Confidences from a Classifier

• The confidence of a probabilistic classifier:

Posterior probability of the top label

 $confidence(x) = \max_{y} P(y|x)$

- Represents how sure the classifier is of the classification
- Any probabilistic model will have confidences
- No guarantee confidence is correct

Calibration

- Weak calibration: higher confidences mean higher accuracy
- Strong calibration: confidence predicts accuracy rate
- What's the value of calibration?

Summary

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems
- Classifier confidences are useful, when you can get them