
Reminder:	Linear	Classifiers

§ Inputs	are	feature	values
§ Each	feature	has	a	weight
§ Sum	is	the	activation

§ If	the	activation	is:
§ Positive,	output	+1
§ Negative,	output	-1

S
f1
f2
f3

w1

w2

w3
>0?

How	to	get	probabilistic	decisions?

§ Activation:
§ If	 very	positive	à want	probability	going	to	1
§ If		 very	negative	à want	probability	going	to	0

§ Sigmoid	function

z = w · f(x)
z = w · f(x)

z = w · f(x)

�(z) =
1

1 + e�z

Best	w?	

§ Maximum	likelihood	estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i) = +1|x(i);w) =
1

1 + e�w·f(x(i))

P (y(i) = �1|x(i);w) = 1� 1

1 + e�w·f(x(i))

=	Logistic	Regression

Multiclass	Logistic	Regression
§ Multi-class	linear	classification

§ A	weight	vector	for	each	class:

§ Score	(activation)	of	a	class	y:

§ Prediction	w/highest	score	wins:

§ How	to	make	the	scores	into	probabilities?	

z1, z2, z3 ! ez1

ez1 + ez2 + ez3
,

ez2

ez1 + ez2 + ez3
,

ez3

ez1 + ez2 + ez3

original activations softmax activations

Best	w?	

§ Maximum	likelihood	estimation:

with:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

P (y(i)|x(i);w) =
ewy(i) ·f(x(i))

P
y e

wy·f(x(i))

=	Multi-Class	Logistic	Regression

This	Lecture

§ Optimization

§ i.e.,	how	do	we	solve:

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Hill	Climbing

§ Recall	from	CSPs	lecture:	simple,	general	idea
§ Start	wherever
§ Repeat:	move	to	the	best	neighboring	state
§ If	no	neighbors	better	than	current,	quit

§ What’s	particularly	tricky	when	hill-climbing	for	multiclass	
logistic	regression?
• Optimization	over	a	continuous	space

• Infinitely	many	neighbors!
• How	to	do	this	efficiently?

1-D	Optimization

§ Could	evaluate and
§ Then	step	in	best	direction

§ Or,	evaluate	derivative:

§ Tells	which	direction	to	step	into

w

g(w)

w0

g(w0)

g(w0 + h) g(w0 � h)

@g(w0)

@w
= lim

h!0

g(w0 + h)� g(w0 � h)

2h

2-D	Optimization

Source: offconvex.org

Gradient	Ascent

§ Perform	update	in	uphill	direction	for	each	coordinate
§ The	steeper	the	slope	(i.e.	the	higher	the	derivative)	the	bigger	the	step	
for	that	coordinate

§ E.g.,	consider:	

§ Updates:

g(w1, w2)

w2 w2 + ↵ ⇤ @g

@w2
(w1, w2)

w1 w1 + ↵ ⇤ @g

@w1
(w1, w2)

§ Updates	in	vector	notation:

with:

w w + ↵ ⇤ rwg(w)

rwg(w) =

"
@g
@w1

(w)
@g
@w2

(w)

#

=	gradient

§ Idea:	
§ Start	somewhere
§ Repeat:		Take	a	step	in	the	gradient	direction

Gradient	Ascent

Figure source: Mathworks

What	is	the	Steepest	Direction?

§ First-Order	Taylor	Expansion:

§ Steepest	Descent	Direction:

§ Recall:	 à

§ Hence,	solution:	

g(w +�) ⇡ g(w) +
@g

@w1
�1 +

@g

@w2
�2

rg =

"
@g
@w1
@g
@w2

#
Gradient	direction	=	steepest	direction!

max
�:�2

1+�2
2"

g(w +�)

max
�:�2

1+�2
2"

g(w) +
@g

@w1
�1 +

@g

@w2
�2

� = "
rg

krgk

� = "
a

kak
max

�:k�k"
�>a

Gradient	in	n	dimensions

rg =

2

6664

@g
@w1
@g
@w2

· · ·
@g
@wn

3

7775

Optimization	Procedure:	Gradient	Ascent

§ init
§ for iter = 1, 2, …

w

§ :	learning	rate	--- tweaking	parameter	that	needs	to	be	
chosen	carefully

§ How?	Try	multiple	choices
§ Crude	rule	of	thumb:	update	changes							about	0.1	– 1	%

↵

w

w w + ↵ ⇤ rg(w)

Batch	Gradient	Ascent	on	the	Log	Likelihood	Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

g(w)

§ init
§ for iter = 1, 2, …

w

w w + ↵ ⇤
X

i

r logP (y(i)|x(i);w)

Stochastic	Gradient	Ascent	on	the	Log	Likelihood	Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init
§ for iter = 1, 2, …

§ pick random j

w

w w + ↵ ⇤ r logP (y(j)|x(j);w)

Observation: once	gradient	on	one	training	example	has	been	
computed,	might	as	well	incorporate	before	computing	next	one

Mini-Batch	Gradient	Ascent	on	the	Log	Likelihood	Objective

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

§ init
§ for iter = 1, 2, …

§ pick random subset of training examples J

w

Observation: gradient	over	small	set	of	training	examples	(=mini-batch)	
can	be	computed	in	parallel,	might	as	well	do	that	instead	of	a	single	one

w w + ↵ ⇤
X

j2J

r logP (y(j)|x(j);w)

§ We’ll	talk	about	that	once	we	covered	neural	networks,	which	
are	a	generalization	of	logistic	regression	

How	about	computing	all	the	derivatives?

Neural	Networks

Multi-class	Logistic	Regression

§ =	special	case	of	neural	network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

Deep	Neural	Network	=	Also	learn	the	features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

Deep	Neural	Network	=	Also	learn	the	features!

f1(x)

f2(x)

f3(x)

fK(x)

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(2)

K(2)

z(2)1

z(2)2

z(2)3

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) g	=	nonlinear	activation	function

Deep	Neural	Network	=	Also	learn	the	features!

s
o
f
t
m
a
x

P (y1|x;w) =
ez1

ez1 + ez2 + ez3

P (y2|x;w) =
ez2

ez1 + ez2 + ez3

P (y3|x;w) =
ez3

ez1 + ez2 + ez3
…

x1

x2

x3

xL

… … … …

z(1)1

z(1)2

z(1)3

z(1)
K(1) z(n)

K(n)z(2)
K(2)

z(2)1

z(2)2

z(2)3 z(n)3

z(n)2

z(n)1

z(OUT)
1

z(OUT)
2

z(OUT)
3

z(n�1)
3

z(n�1)
2

z(n�1)
1

z(n�1)
K(n�1)

…

z(k)i = g(
X

j

W (k�1,k)
i,j z(k�1)

j) g	=	nonlinear	activation	function

Common	Activation	Functions

[source:	MIT	6.S191	introtodeeplearning.com]	

Deep	Neural	Network:	Also	Learn	the	Features!

§ Training	the	deep	neural	network	is	just	like	logistic	regression:

just	w	tends	to	be	a	much,	much	larger	vector	J

àjust	run	gradient	ascent	
+	stop	when	log	likelihood	of	hold-out	data	starts	to	decrease

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

Neural	Networks	Properties

§ Theorem	(Universal	Function	Approximators).		A	two-layer	neural	
network	with	a	sufficient	number	of	neurons	can	approximate	
any	continuous	function	to	any	desired	accuracy.

§ Practical	considerations
§ Can	be	seen	as	learning	the	features	

§ Large	number	of	neurons
§ Danger	for	overfitting
§ (hence	early	stopping!)

Universal	Function	Approximation	Theorem*

§ In	words: Given	any	continuous	function	f(x),	if	a	2-layer	neural	
network	has	enough	hidden	units,	then	there	is	a	choice	of	
weights	that	allow	it	to	closely	approximate	f(x).	

Cybenko (1989)	“Approximations	by	superpositions	of	sigmoidal	functions”
Hornik (1991)	“Approximation	Capabilities	of	Multilayer	Feedforward	Networks”
Leshno and	Schocken (1991)	”Multilayer	Feedforward	Networks	with	Non-Polynomial	Activation	
Functions	Can	Approximate	Any	Function”

Universal	Function	Approximation	Theorem*

Cybenko (1989)	“Approximations	by	superpositions	of	sigmoidal	functions”
Hornik (1991)	“Approximation	Capabilities	of	Multilayer	Feedforward	Networks”
Leshno and	Schocken (1991)	”Multilayer	Feedforward	Networks	with	Non-Polynomial	Activation	
Functions	Can	Approximate	Any	Function”

§ Derivatives	tables:

How	about	computing	all	the	derivatives?

[source:		http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How	about	computing	all	the	derivatives?

n But	neural	net	f	is	never	one	of	those?
n No	problem:	CHAIN	RULE:

If	

Then

à Derivatives	can	be	computed	by	following	well-defined	procedures

f(x) = g(h(x))

f 0(x) = g0(h(x))h0(x)

§ Automatic	differentiation	software	
§ e.g.	Theano,	TensorFlow,	PyTorch,	Chainer
§ Only	need	to	program	the	function	g(x,y,w)
§ Can	automatically	compute	all	derivatives	w.r.t.	all	entries	in	w
§ This	is	typically	done	by	caching	info	during	forward	computation	pass	
of	f,	and	then	doing	a	backward	pass	=	“backpropagation”

§ Autodiff /	Backpropagation	can	often	be	done	at	computational	cost	
comparable	to	the	forward	pass

§ Need	to	know	this	exists
§ How	this	is	done?	

Automatic	Differentiation

Summary	of	Key	Ideas
§ Optimize	probability	of	label	given	input

§ Continuous	optimization
§ Gradient	ascent:

§ Compute	steepest	uphill	direction	=	gradient	(=	just	vector	of	partial	derivatives)
§ Take	step	in	the	gradient	direction
§ Repeat	(until	held-out	data	accuracy	starts	to	drop	=	“early	stopping”)

§ Deep	neural	nets
§ Last	layer	=	still	logistic	regression
§ Now	also	many	more	layers	before	this	last	layer

§ =	computing	the	features
§ à the	features	are	learned	rather	than	hand-designed

§ Universal	function	approximation	theorem
§ If neural	net	is	large	enough	
§ Then neural	net	can	represent	any	continuous	mapping	from	input	to	output	with	arbitrary	accuracy
§ But	remember:	need	to	avoid	overfitting		/	memorizing	the	training	data	à early	stopping!

§ Automatic	differentiation	gives	the	derivatives	efficiently	(how?	=	outside	of	scope	of	188)

max
w

ll(w) = max
w

X

i

logP (y(i)|x(i);w)

