Naïve Bayes Recap

- Bag of words (order independent)
- Features are assumed independent given class

$$P(x_1,\ldots,x_n|c) = P(x_1|c)\ldots P(x_n|c)$$

Q: Is this really true?

The problem with assuming conditional independence

 Correlated features -> double counting evidence

- Parameters are estimated independently

• This can hurt classifier accuracy and calibration

Logistic Regression

- Doesn't assume features are independent
- Correlated features don't "double count"

What are "Features"?

- A feature function, f
 - Input: Document, D (a string)
 - Output: Feature Vector, X

What are "Features"?

$$f(d) =$$

(count("boring") count("not boring") length of document author of document .

Doesn't have to be just "bag of words"

Feature Templates

- Typically "feature templates" are used to generate many features at once
- For each word:
 - \${w}_count
 - \${w}_lowercase
 - \${w}_with_NOT_before_count

Logistic Regression: Example

• Compute Features:

$$f(d_i) = x_i = \begin{pmatrix} \text{count("nigerian")} \\ \text{count("prince")} \\ \text{count("nigerian prince")} \end{pmatrix}$$

• Assume we are given some weights:

$$w = \begin{pmatrix} -1.0\\ -1.0\\ 4.0 \end{pmatrix}$$

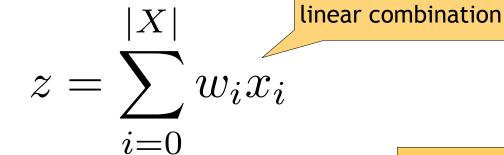
Logistic Regression: Example

- Compute Features
- We are given some weights
- Compute the dot product:

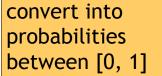
$$z = \sum_{i=0}^{|X|} w_i x_i$$

Logistic Regression: Example

Compute the dot product:

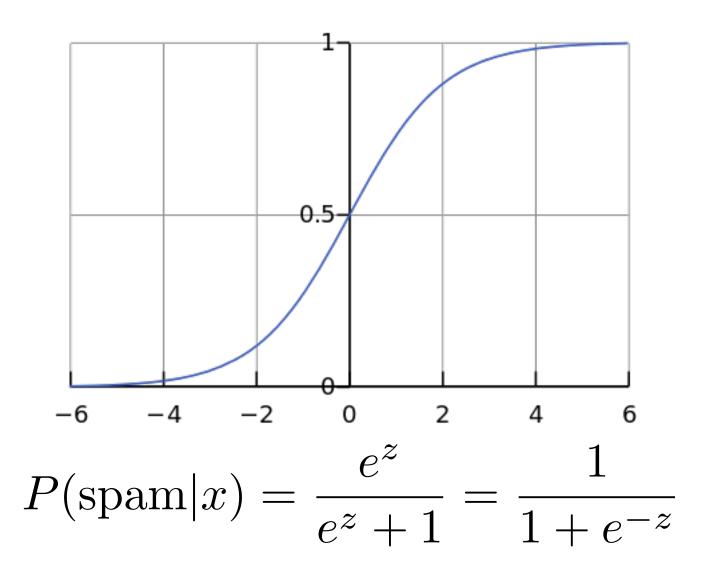


• Compute the logistic function:



$$P(\text{spam}|x) = \frac{e^z}{e^z + 1} = \frac{1}{1 + e^{-z}}$$

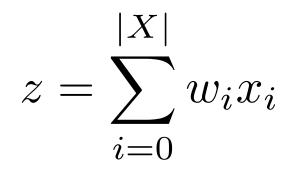
The Logistic function



Logistic Regression

• (Log) Linear Model - similar to Naïve Bayes

The Dot Product



- Intuition: weighted sum of features
- All Linear models have this form

Log Linear Model

 A log-linear model is a mathematical model has the form a a function whose logarithm is a linear combination of the parameters.

$$\exp\Big(\sum_{i=0}^{|X|} w_i x_i\Big)$$

Naïve Bayes as a log-linear model

• Q: what are the features?

• Q: what are the weights?

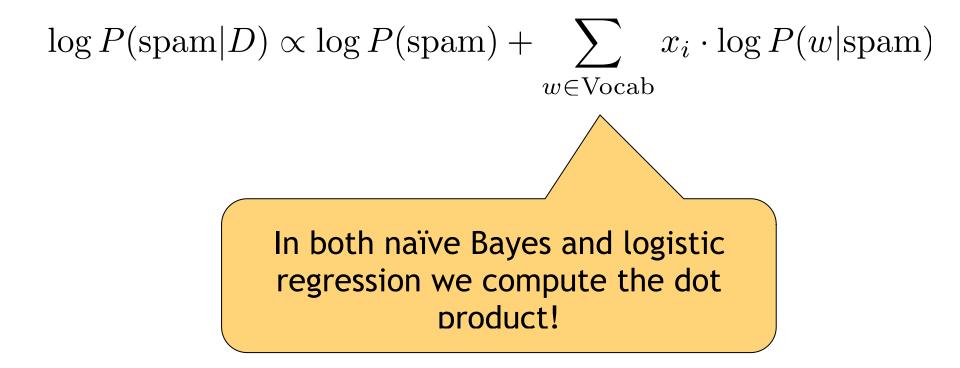
Naïve Bayes as a Log-Linear Model

$P(\text{spam}|D) \propto P(\text{spam}) \prod_{w \in D} P(w|\text{spam})$

$P(\text{spam}|D) \propto P(\text{spam}) \prod_{w \in \text{Vocab}} P(w|\text{spam})^{x_i}$

 $\log P(\operatorname{spam}|D) \propto \log P(\operatorname{spam}) + \sum_{w \in \operatorname{Vocab}} x_i \cdot \log P(w|\operatorname{spam})$

Naïve Bayes as a Log-Linear Model



NB vs. LR

- Both compute the dot product
- NB: sum of log probabilities
- LR: logistic function

NB vs. LR: Parameter Learning

• Naïve Bayes:

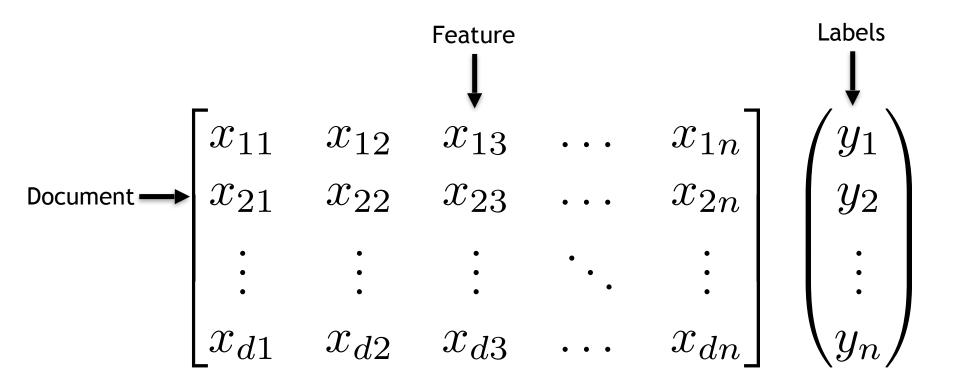
Learn conditional probabilities
independently by counting

Logistic Regression:
Learn weights jointly

LR: Learning Weights

- Given: a set of feature vectors and labels
- Goal: learn the weights

LR: Learning Weights

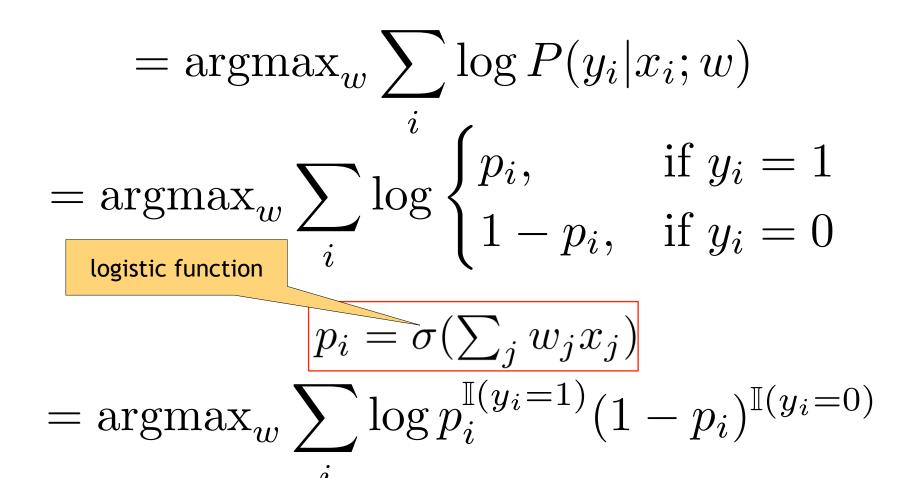


Q: what parameters should we choose?

- What is the right value for the weights?
- Maximum Likelihood Principle:
 - Pick the parameters that maximize the probability of the y labels in the training data given the observations x.

Maximum Likelihood Estimation

$$w_{\text{MLE}} = \operatorname{argmax}_{w} \log P(y_1, \dots, y_d | x_1, \dots, x_d; w)$$



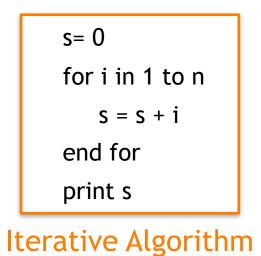
Maximum Likelihood Estimation

$$= \operatorname{argmax}_{w} \sum_{i} \log p_{i}^{\mathbb{I}(y_{i}=1)} (1-p_{i})^{\mathbb{I}(y_{i}=0)}$$
$$= \operatorname{argmax}_{w} \sum_{i} y_{i} \log p_{i} + (1-y_{i}) \log(1-p_{i})$$

Unfortunately there is no closed form solution
- (like there was with naïve Bayes)

Closed Form Solution

- a Closed Form Solution is a simple solution that works instantly without any loops, functions etc
- e.g. the sum of integer from 1 to n



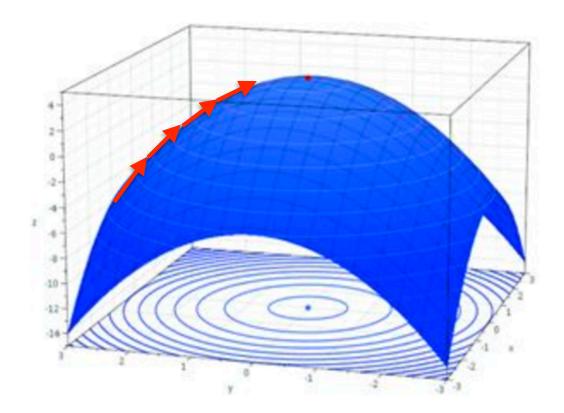
s = n(n +1)/2

Closed Form Solution

Maximum Likelihood Estimation

- Solution:
 - Iteratively climb the log-likelihood surface through the derivatives for each weight
- Luckily, the derivatives turn out to be nice

Gradient Ascent



Gradient Ascent

For all features **j**, compute and add derivatives

 \cap

$$w_j^{\text{new}} = w_j^{\text{old}} + \eta \frac{\partial}{\partial w_j} \mathcal{L}(w)$$

 $\mathcal{L}(w)$: Training set log-likelihood

$$\left(\frac{\partial \mathcal{L}}{\partial w_1}, \frac{\partial \mathcal{L}}{\partial w_2}, \dots, \frac{\partial \mathcal{L}}{\partial w_n}\right) : \text{Gradient vector}$$

Derivative Rules

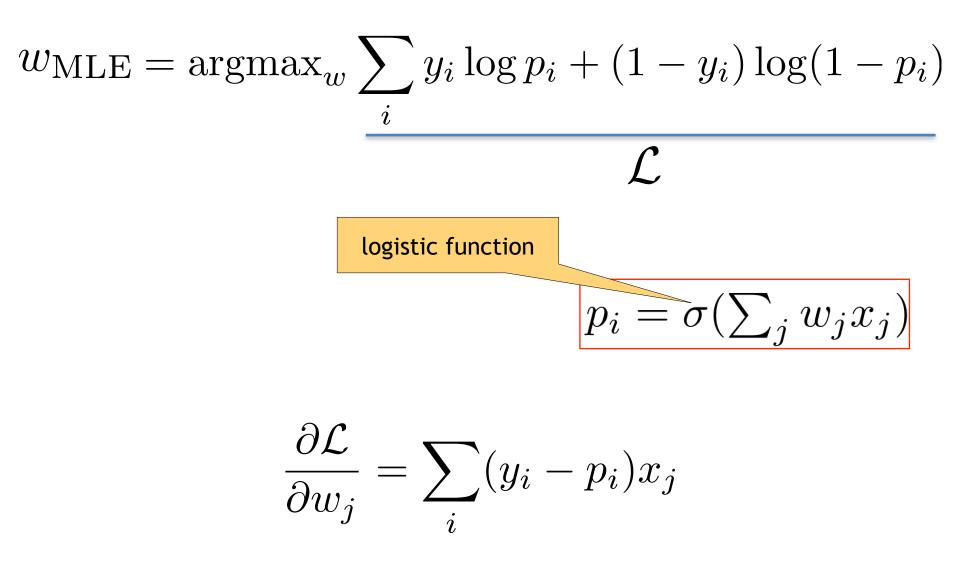
Common Functions	Function	Derivative
Constant	с	0
Line	x	1
	ах	а
Square	x ²	2x
Square Root	√x	(1/2)x ^{-1/2}
Exponential	e ^x	e ^x
	a ^x	ln(a) a ^x
Logarithms	ln(x)	1/x
	log _a (x)	1 / (x ln(a))

Rules	Function	Derivative
Multiplication by constant	cf	cf'
Power Rule	x ⁿ	nx ⁿ⁻¹
Sum Rule	f + g	f' + g'
Difference Rule	f - g	f' – g'
Product Rule	fg	f g' + f' g
Quotient Rule	f/g	$(f' g - g' f)/g^2$
Reciprocal Rule	1/f	-f'/f ²
Chain Rule (as <u>"Composition of Functions")</u>	f°g	(f' ° g) × g'
Chain Rule (using ')	f(g(x))	f'(g(x))g'(x)
Chain Rule (using $\frac{d}{dx}$)	$\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$	

Derivative of Sigmoid

 $\frac{d}{dx}\sigma(x) = \frac{d}{dx} \left[\frac{1}{1+e^{-x}} \right]$ $= \frac{d}{dx} \left(1 + \mathrm{e}^{-x}\right)^{-1}$ $= -(1 + e^{-x})^{-2}(-e^{-x})$ $=\frac{e^{-x}}{\left(1+e^{-x}\right)^2}$ $=\frac{1}{1+e^{-x}}\cdot\frac{e^{-x}}{1+e^{-x}}$ $=\frac{1}{1+e^{-x}}\cdot\frac{(1+e^{-x})-1}{1+e^{-x}}$ $=\frac{1}{1+e^{-x}}\cdot\left(1-\frac{1}{1+e^{-x}}\right)$ $= \sigma(x) \cdot (1 - \sigma(x))$

LR Gradient



Logistic Regression: Pros and Cons

- Doesn't assume conditional independence of features
 - Better calibrated probabilities
 - Can handle highly correlated overlapping features
- NB is faster to train, less likely to overfit