Nailve Bayes Recap

* Bag of words (order independent)

» Features are assumed independent given class

P(zq1,...,z,|c) = P(x1lc) ... P(x,|c)

Q: Is this really true?



The problem with assuming conditional
independence

Correlated features -> double counting
evidence
— Parameters are estimated independently

This can hurt classifier accuracy and
calibration



Logistic Regression

* Doesn’t assume features are independent

 Correlated features don’t “double count”



What are “Features’?

» A feature function, f
— Input: Document, D (a string)
— Qutput: Feature Vector, X



What are “Features’?

count( “boring”)
count( “not boring”)
f(d) = length of document
author of document

Doesn’t have to be just “bag of words”



Feature Templates

» Typically “feature templates” are used to
generate many features at once

* For each word:
— ${w}_count
— ${w}_lowercase
— ${w}_with_NOT_before_count



Logistic Regression: Example

 Compute Features:
count( “nigerian”)
f(d;) = x; = count( “prince”)
count( “nigerian prince”)

* Assume we are given some weights:
—1.0

w= | —1.0
4.0



Logistic Regression: Example

 Compute Features
* We are given some weights
 Compute the dot product:

1=0



Logistic Regression: Example

 Compute the dot product:

| X | linear combination

1=0 :
convert into

» Compute the logistic function: pobebiites

e” 1

6Z—|—1:1—|—6_Z

P(spam|x) =



The Logistic function
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Logistic Regression

* (Log) Linear Model - similar to Naive Bayes



The Dot Product

| X|

1=0

* [ntuition: weighted sum of features
* All Linear models have this form



Log Linear Model

* Alog-linear model is a mathematical
model has the form a a function whose

logarithm is a linear combination of the
parameters.

| X|

exp( ;wz%)



LSO A LOG-LINEAR MODEL?




Naive Bayes as a log-linear model

* Q: what are the features?

* Q: what are the weights?



Nalve Bayes as a Log-Linear Model

P(spam|D) «x P(spam) H P(w|spam)

weD

P(spam|D) o« P(spam) H P(w|spam)®

wEVocab

log P(spam|D)  log P(spam) + Z z; - log P(w|spam)

wEVocab



Nalve Bayes as a Log-Linear Model

log P(spam|D)  log P(spam) + Z x; - log P(w|spam)

wEVocab

/ O

In both naive Bayes and logistic
regression we compute the dot
product!




NB vs. LR

* Both compute the dot product
* NB: sum of log probabilities

* LR: logistic function



NB vs. LR:
Parameter Learning

* Naive Bayes:
— Learn conditional probabilities
independently by counting

* Logistic Regression:
— Learn weights jointly



LR: Learning Weights

 Given: a set of feature vectors and labels

* Goal: learn the weights



LR: Learning Weights

Feature Labels

_ ! o
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Q: what parameters should we choose?

* What is the right value for the weights?

* Maximum Likelihood Principle:

— Pick the parameters that maximize the
probability of the y labels in the training data
given the observations x.



Maximum Likelihood Estimation

wwmLe = argmax,, log P(y1,...,yq|lT1,...,2q;w)

= argmax,, Z log P(y;|xi; w)

Dis if y; =1
— argmax lo
Bmax, ) g{l—pi, if 3 = 0

)

logistic function

pi =0(2_; w;x;)
— argmax,, Z log pg(yizl) (1 _ pi)ﬂ(yFO)




Maximum Likelihood Estimation
— ar Zl [(yi=1) /1 . \I(y;=0)
= argmax,,, og P, (1 — p;)

= argmax,, Zy@ log pi + (1 — y;) log(1 — p;)

* Unfortunately there is no closed form solution
- (like there was with naive Bayes)



Closed Form Solution

* a Closed Form Solution is a simple solution
that works instantly without any loops,
functions etc

» e.g. the sum of integer from 1 to n

s=0
foriin1ton
S=S+1] s=n(n+1)/2
end for
print s



Maximum Likelihood Estimation

* Solution:

— Iteratively climb the log-likelihood surface
through the derivatives for each weight

 Luckily, the derivatives turn out to be nice



Gradient Ascent




Gradient Ascent

Loop While not converged:
For all features j, compute and add derivatives

0
new __ , old
w; Y = w; +778—wj[,(w)

ﬁ(w): Training set log-likelihood
( oL 0L oL

Ow, Ows —  Ow,

) : Gradient vector



Derivative Rules

Rules Function Derivative
Multiplication by constant cf cf’
Common Functions Function Derivative
-1
Constant C 0 Power Rule x" nx"
Line X 1 Sum Rule f+g f +q’
ax a Difference Rule f-g ff—q’
Square x? 2x Product Rule fg fg'+fg
Square Root oA ()X Quotient Rule f/g (fg - g f)/g?
Exponential X X
€ € Reciprocal Rule 1/f —f'/f2
ax In(a) a*
Logarithms In(x) 1/x
Chain Rule
loga(x 1 I fo fro x g’
— / (xIn(a)) (as "Composition of Functions") 9 (Fo9)xg
Chain Rule (using ") f(g(x)) f'(g(x))g’(x)
d d dy d
Chain Rule (using — ) i
dx dx du dx



Derivative of Sigmoid
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LR Gradient

WMLE = argmax,, Zyz log p; + (1 — yz) log(l — pz‘)

L

logistic function




Logistic Regression: Pros and Cons

* Doesn’t assume conditional independence
of features

— Better calibrated probabilities

— Can handle highly correlated overlapping
features

* NB is faster to train, less likely to overfit



