
Decision	Trees



Reminder:	Features

§ Features,	aka	attributes
§ Sometimes:	TYPE=French

§ Sometimes:	fTYPE=French(x)	=	1



Decision	Trees

§ Compact	representation	of	a	function:
§ Truth	table
§ Conditional	probability	table
§ Regression	values

§ True	function
§ Realizable:	in	H



Expressiveness	of	DTs

§ Can	express	any	function	of	the	features

§ However,	we	hope	for	compact	trees



Comparison:	Perceptrons

§ What	is	the	expressiveness	of	a	perceptron	over	these	features?

§ For	a	perceptron,	a	feature’s	contribution	is	either	positive	or	negative
§ If	you	want	one	feature’s	effect	to	depend	on	another,	you	have	to	add	a	new	conjunction	feature
§ E.g.	adding	“PATRONS=full	ÙWAIT	=	60”	allows	a	perceptron	to	model	the	interaction	between	the	two	atomic	

features

§ DTs	automatically	conjoin	features	/	attributes
§ Features	can	have	different	effects	in	different	branches	of	the	tree!

§ Difference	between	modeling	relative	evidence	weighting	(NB)	and	complex	evidence	interaction	(DTs)
§ Though	if	the	interactions	are	too	complex,	may	not	find	the	DT	greedily



Hypothesis	Spaces

§ How	many	distinct	decision	trees	with	n	Boolean	attributes?
=	number	of	Boolean	functions	over	n	attributes
=	number	of	distinct	truth	tables	with	2n rows
=	2^(2n)
§ E.g.,	with	6	Boolean	attributes,	there	are

18,446,744,073,709,551,616	trees

§ How	many	trees	of	depth	1	(decision	stumps)?
=	number	of	Boolean	functions	over	1	attribute
=	number	of	truth	tables	with	2	rows,	times	n
=	4n
§ E.g.	with	6	Boolean	attributes,	there	are	24	decision	stumps

§ More	expressive	hypothesis	space:
§ Increases	chance	that	target	function	can	be	expressed	(good)
§ Increases	number	of	hypotheses	consistent	with	training	set	

(bad,	why?)
§ Means	we	can	get	better	predictions	(lower	bias)
§ But	we	may	get	worse	predictions	(higher	variance)



Decision	Tree	Learning

§ Aim:	find	a	small	tree	consistent	with	the	training	examples
§ Idea:	(recursively)	choose	“most	significant”	attribute	as	root	of	(sub)tree



Choosing	an	Attribute

§ Idea:	a	good	attribute	splits	the	examples	into	subsets	that	are	(ideally)	“all	positive”	or	
“all	negative”

§ So:	we	need	a	measure	of	how	“good”	a	split	is,	even	if	the	results	aren’t	perfectly	
separated	out



Entropy	and	Information

§ Information answers	questions
§ The	more	uncertain	about	the	answer	initially,	the	more	

information	in	the	answer
§ Scale:	bits

§ Answer	to	Boolean	question	with	prior	<1/2,	1/2>?		
§ Answer	to	4-way	question	with	prior	<1/4,	1/4,	1/4,	1/4>?
§ Answer	to	4-way	question	with	prior	<0,	0,	0,	1>?
§ Answer	to	3-way	question	with	prior	<1/2,	1/4,	1/4>?

§ A	probability	p	is	typical	of:
§ A	uniform	distribution	of	size	1/p
§ A	code	of	length	log	1/p



Entropy

§ General	answer:	if	prior	is	<p1,…,pn>:
§ Information	is	the	expected	code	length

§ Also	called	the	entropy	of	the	distribution
§ More	uniform	=	higher	entropy
§ More	values	=	higher	entropy
§ More	peaked	=	lower	entropy
§ Rare	values	almost	“don’t	count”

1 bit

0 bits

0.5 bit



Information	Gain

§ Back	to	decision	trees!
§ For	each	split,	compare	entropy	before	and	after

§ Difference	is	the	information	gain
§ Problem:	there’s	more	than	one	distribution	after	split!

§ Solution:	use	expected	entropy,	weighted	by	the	number	of	
examples



Information	Gain

§ Back	to	decision	trees!
§ For	each	split,	compare	entropy	before	and	after

§ Difference	is	the	information	gain
§ Problem:	there’s	more	than	one	distribution	after	split!

§ Solution:	use	expected	entropy,	weighted	by	the	number	of	examples
§ Note:	hidden	problem	here!		Gain	needs	to	be	adjusted	for	large-domain	

splits	– why?



Next	Step:	Recurse

§ Now	we	need	to	keep	growing	the	tree!
§ Two	branches	are	done	(why?)
§ What	to	do	under	“full”?

§ See	what	examples	are	there…



Example:	Learned	Tree

§ Decision	tree	learned	from	these	12	examples:

§ Substantially	simpler	than	“true”	tree
§ A	more	complex	hypothesis	isn't	justified	by	data

§ Also:	it’s	reasonable,	but	wrong



Example:	Miles	Per	Gallon

40
 E

xa
m

pl
es

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia
bad 6 medium medium medium medium 70to74 america
bad 4 medium medium medium low 75to78 europe
bad 8 high high high low 70to74 america
bad 6 medium medium medium medium 70to74 america
bad 4 low medium low medium 70to74 asia
bad 4 low medium low low 70to74 asia
bad 8 high high high low 75to78 america
: : : : : : : :
: : : : : : : :
: : : : : : : :
bad 8 high high high low 70to74 america
good 8 high medium high high 79to83 america
bad 8 high high high low 75to78 america
good 4 low low low low 79to83 america
bad 6 medium medium medium high 75to78 america
good 4 medium low low low 79to83 america
good 4 low low medium high 79to83 america
bad 8 high high high low 70to74 america
good 4 low medium low medium 75to78 europe
bad 5 medium medium medium medium 75to78 europe



Find	the	First	Split

§ Look	at	information	gain	for	
each	attribute

§ Note	that	each	attribute	is	
correlated	with	the	target!

§ What	do	we	split	on?



Result:	Decision	Stump



Second	Level



Final Tree



Reminder:	Overfitting

§ Overfitting:
§ When	you	stop	modeling	the	patterns	in	the	training	data	(which	
generalize)

§ And	start	modeling	the	noise	(which	doesn’t)

§ We	had	this	before:
§ Naïve	Bayes:	needed	to	smooth
§ Perceptron:	early	stopping



MPG Training 
Error

The test set error is much worse than the 
training set error…

…why?



Consider this 
split



Significance	of	a	Split

§ Starting	with:
§ Three	cars	with	4	cylinders,	from	Asia,	with	medium	HP
§ 2	bad	MPG
§ 1	good	MPG

§ What	do	we	expect	from	a	three-way	split?
§ Maybe	each	example	in	its	own	subset?
§ Maybe	just	what	we	saw	in	the	last	slide?

§ Probably	shouldn’t	split	if	the	counts	are	so	small	they	could	be	due	to	chance

§ A	chi-squared	test	can	tell	us	how	likely	it	is	that	deviations	from	a	perfect	split	are	due	to	chance*

§ Each	split	will	have	a	significance	value, pCHANCE



Keeping	it	General

§ Pruning:
§ Build	the	full	decision	tree
§ Begin	at	the	bottom	of	the	tree
§ Delete	splits	in	which	

pCHANCE >	MaxPCHANCE
§ Continue	working	upward	until	
there	are	no	more	prunable
nodes

§ Note:	some	chance	nodes	may	
not	get	pruned	because	they	
were	“redeemed”	later

a b y
0 0 0
0 1 1
1 0 1
1 1 0

y = a XOR b



Pruning	example

§ With	MaxPCHANCE =	0.1:

Note the improved 
test set accuracy 

compared with the 
unpruned tree



Regularization

§ MaxPCHANCE is	a	regularization	parameter
§ Generally,	set	it	using	held-out	data	(as	usual)

Small Trees Large Trees

MaxPCHANCE
IncreasingDecreasing

Ac
cu

ra
cy

High Bias High Variance

Held-out / Test
Training



Two	Ways	of	Controlling	Overfitting

§ Limit	the	hypothesis	space
§ E.g.	limit	the	max	depth	of	trees
§ Easier	to	analyze

§ Regularize	the	hypothesis	selection
§ E.g.	chance	cutoff
§ Disprefer most	of	the	hypotheses	unless	data	is	clear
§ Usually	done	in	practice


