Travel Time Estimation without Road Networks: An Urban Morphological Layout Representation Approach

Wuwei Lan, Department of Computer Science, OSU
Yanyan Xu, Department of City and Regional Planning, UC Berkeley
Bin Zhao, Wisense AI
Outlines

- Problem Definition and General Solutions
- Proposed Solution
- Model Description
- Experiment Results
Travel Time Estimation

• A.k.a. Estimated Time of Arrival (ETA)

• TTE serves
 • Personal trip planning
 • Service quality of TNC companies
 • Emergency vehicles (Firefighting apparatus, Ambulance)
 • Travel exposure to air pollutants
 • Accessibility evaluation in city planning
Problem Definition

• *Path-aware ETA*
Given a trip query with departure time, origin, destination locations, and the selected route.

• *Path-blind ETA*
Given a trip query with departure time, origin, destination locations.

Path-blind ETA is more difficult as there are many routes between two locations in urban region.
Why ETA is not well solved?

- Dynamic traffic conditions in urban road networks
- Uncertain waiting time at traffic lights
- Varying weather conditions
- Unpredicted traffic events
- Diverse driving behavior
General Solutions

• Link based methods
Estimating the travel time on each link, then aggregating the links in one path.

• Path based methods
Estimating the path travel time using features and the representation of temporal and spatial relation between locations.
Our solution

• Learning travel time without road networks, thus avoiding map-matching.

• Learning the traffic delay from the build environmental images

A sample trip
Structure of Model - Deep Image to Time (Deepl2T)

1. Merging or padding the raw trace
2. Representing each grid image with CNN
3. Collecting other features, combining all features together
4. Feeding the features to bi-LSTM
Features collection

• Image representation

• Driving direction (12 directions in total)
Feature collection

• Spatial relation
 We construct grid network and apply network embedding to capture this spatial locality. LINE [Tang et al., 2015] is used for network embedding.

• Traffic count in each block
 We count the number of vehicle in each grid per hour. Each grid is associated with a flow vector with 24 elements, representing the change of traffic conditions every hour.

• Vehicle ID

• Departure time (minute in one day, day in week)

• Weather
Multi-task learning

• Given a trip with L grids, \{g_1, g_2, ..., g_L\}, we consider not only the mean absolute percentage error (MAPE) of the whole path from g_1 to g_L, but also the MAPE of sub-paths from g_1 to the medium grid g_l.

• Loss function

\[
\mathcal{L} = \frac{1}{L-1} \sum_{l=2}^{L} \left(w_l \cdot \frac{|\hat{T}_l - T_l|}{T_l} \right)
\]

where \(T_l = t_l - t_1 \) denotes the travel time from grid \(g_1 \) to \(g_l \) and \(\hat{T}_l \) denotes its estimation; \(w_l \) is the predefined weight, \(w_l = 2l/(L^2 + L - 2) \), where \(1 < l \leq L \) and \(\sum_{l=2}^{L} w_l = 1 \). In this way, we emphasize the longer sub-trips, to make sure model put more effort on whole trip estimation.
Travel Time Estimation

• Path-aware
 The whole path is given in the trip query, along with the Vehicle ID and departure time.

• Path-blind
 Only vehicle ID and departure time is given.

We design a neighboring strategy to tackle the path-blind query in the testing phase.

\[
\hat{T}_{test} = \frac{1}{N_e} \sum_{i=1}^{N_e} \frac{L_{test}}{L_i} \hat{T}_i
\]
Experiments

• Test the model with data in two cities

 • Shanghai
 # vehicles: 15,000
 # days for training: 61
 # days for testing: 15

 • Porto
 # vehicles: 442
 # days for training: 273
 # days for testing: 90
Experiments

• Performance evaluation

\[
MAE(T, \hat{T}) = \frac{1}{N} \sum_{i=1}^{N} |T_i - \hat{T}_i| \\
MAPE(T, \hat{T}) = \frac{1}{N} \sum_{i=1}^{N} \frac{|T_i - \hat{T}_i|}{T_i} \times 100\% \\
SR(T, \hat{T}) = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{|T_i - \hat{T}_i|}{T_i} \leq 10\% \right) \times 100\%
\]

<table>
<thead>
<tr>
<th>Method</th>
<th>Shanghai</th>
<th></th>
<th>Porto</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MAE (s)</td>
<td>MAPE (%)</td>
<td>SR (%)</td>
<td>MAE (s)</td>
</tr>
<tr>
<td>LR</td>
<td>186.5</td>
<td>27.64</td>
<td>23.87</td>
<td>287.9</td>
</tr>
<tr>
<td>AVG</td>
<td>158.9</td>
<td>22.30</td>
<td>29.35</td>
<td>235.86</td>
</tr>
<tr>
<td>GBM</td>
<td>144.3</td>
<td>22.55</td>
<td>30.45</td>
<td>238.17</td>
</tr>
<tr>
<td>TEMP [Wang et al., 2016]</td>
<td>141.0</td>
<td>21.93</td>
<td>31.24</td>
<td>231.10</td>
</tr>
<tr>
<td>DeepTTE [Wang et al., 2018a]</td>
<td>147.61</td>
<td>19.02</td>
<td>31.13</td>
<td>167.94</td>
</tr>
<tr>
<td>GridLSTM</td>
<td>117.12</td>
<td>16.98</td>
<td>37.00</td>
<td>139.55</td>
</tr>
<tr>
<td>DeepI2T ((\text{path-blind}))</td>
<td>143.61</td>
<td>20.47</td>
<td>30.62</td>
<td>186.65</td>
</tr>
<tr>
<td>DeepI2T ((\text{path-aware}))</td>
<td>105.43</td>
<td>15.20</td>
<td>42.23</td>
<td>128.26</td>
</tr>
</tbody>
</table>

Table 3: Overall performance comparison on Shanghai and Porto Data. Path-aware methods are highlighted in gray shadow.
Experiments

MAPE by departure time

Figure 6: Estimation error for trips with different departure time.

MAPE by travel time

Figure 7: Estimation error for trips with different travel time. The right y-axis shows the distribution of testing trips.
Future directions

• Integrating recent traffic conditions is helpful to improve the performance of DeepI2E.

• This model can be used to estimate other attributes of trips, e.g., fuel emission, energy consumption of EVs.

• The representation of grid images might be useful for other geo-locations related urban problems, e.g., crime rate prediction, local air quality estimation.

• Map images could be replaced by satellite images, which have more rich information.
Thank you!

Contact:
Wuwei Lan: lan.105@osu.edu
Yanyan Xu: yanyanxu@berkeley.edu